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1 Smoothing Splines

1.1 Overview

The smoothing spline estimator is a type of penalized least squares nonparametric esti-

mator. For a set of observations i = 1, · · · , n, the smoothing spline converts the standard

OLS functional form:

Yi = βXi + εi

into a generalized specification, with an unknown functional form denoted by f . The

assumption we make on f is that is has a continuous first and second derivate. Yi can

therefore be expressed as:

Yi = f(xi) + εi

The least sqaures minimization of this equation would be similar to ordinary least squares:

n∑
i=1

[Yi − f(xi)]
2

[2] calls this aspect the ”fidelity” to the data. If this were the only aspect of the mini-

mization for the smoothing spline, then with no functional constraints on f(x) (besides

continuous first and second derivates), the solution to the minimization would be to in-

terpolate each data point (with cubic polynomials to ensure differentiability), leading to

a perfect fit, with εi = 0 ∀i. While this technically minimizes the squared errors, this

does not constitute actual statistical anylsis.

The smoothing spline deals with this overfitting issue in a similar fashion to how the ridge

regression penalizes large parameters. However, where the ridge regression penalized hav-
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ing large paramters, the smoothing spline penalizes roughness in f . This mathematically

translates to penalizing the squared second derivate. The second derivate acts a measure

of roughness since the second derivative is how much the rate of change is changing. For

example, if f transitions from decreasing to increasing, this would be a positive second

derivative, and the opposite change would be a negative second derivative. Squaring the

second derivate places an even further penalty to select for fewer transitions in f .

The full minimization function for the smoothing spline is therefore:

n∑
i=1

[Yi − f(xi)]
2 + λ

∫ b

a

[f
′′
(x)]2dx

The λ parameter governs the level of penalty attributed to the roughness of the data, with

a smaller λ allowing f to more closely fit the data, and the smoothing spline approaching

a straight line as λ −→∞.

In terms of implemenation, the smoothing spline can be expressed as a penalized regression

spline, using a cubic spline basis. The smoothing penalty will have an additional effect

beyond the constraint of the dimension of the basis when the dimension of the cubic basis

is sufficiently large. In practice, while a cubic spline would place some number of knots

less than the number of data points throughout the range of data, a smoothing spline

would allow the number of knots to be equal to the number of data points. This would

translate to allowing the λ penalty to constrain the wigglyness of f , rather than dimension

of the the basis of the cubic spline.

The minimization problem outlined above in terms of f can be expressed in a quadratic

form in terms of a cubic spline basis X:

n∑
i=1

[Yi − f(xi)]
2 + λ

∫ b

a

[f
′′
(x)]2dx =

n∑
i=1

[Yi −X
′
β]2 + λβ

′
Sβ
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Since this minimization problem is quadratic, there is a closed-form algebraic solution:

β̂ = (X
′
X + λS)−1X

′
y

Here, we can see that this solution is nearly identical to the ridge regression minimization

solution, except that for the ridge regression, in place of the S matrix, we use the identity

matrix, I.

1.2 Cross Validation

While the parameters on the cubic spline basis used can be solved for algebraically given

a choice for λ, we also need a way to determine the best choice for λ. If there exists

a true function f , then we would like to minimize the squared differences between our

estimator f̂ and f for all points in the dataset. This is known as the predictive sqaured

error, PSE.

PSE(λ) =
1

n

n∑
i=1

[
f̂λ(xi)− f(xi)

]2

Since we cannot know the true functional form f , we can use the large sample property

that as n −→ ∞, f̂−iλ (xi) −→ f̂λ(xi). With this, we can arrive at the leave-one-out cross

validation estimator of PSE:

P̂SE(λ) =
1

n

n∑
i=1

[
f̂−iλ (xi)− yi

]2

This can be shown to be independent of the leave-one-out estimator f̂−iλ , with:

P̂SE(λ) =
1

n

n∑
i=1

(
yi − ŷi,λ
1− Sii

)2
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Where Sii is the ith diagonal of the smoothing matrix S used in the representation of the

second derivative in a cubic spline basis.

1.3 Generalized Cross Validation

The leave-one-out cross validation score is ”generalized” by using the average of all the

diagonals in the S matrix, rather than each diagonal within the sum. The generalized

cross validation score is then therefore:

GCV (λ) =
1

n

n∑
i=1

(
yi − ŷi,λ
1− tr[S]

n

)2

The generalized cross validation score can also be shown to minimize the squared distance

between f̂ and f as n −→ ∞. Additionally, it is computationally easier to calculate the

generalized cross validation than the ordinary cross validation score.

2 Types of Data

As with any nonparametric estimator, the smoothing spline is a way to model the rela-

tionship between variables. This type of estimator lends itself naturally to cross sectional

data, but it can be used in time series data as well, with some further caveats however.

In [10], the authors explain that, as with OLS, the standard cross validation methods

for the selection of λ are based on the assumption of independent observations. If the

observations are autocorrelated, as is generally the case with time series data, then these

standard methods fail. The mgcv package in R deals with general additive models, and

pairs with the nlme package which allows for the definition of a non iid correlation struc-

ture. With an underlying autocorrelation structure assumed, both λ and the correlation

parameters are simultaneously estimated.

However, this approach of using MLE to simultaneously estimate the model and corre-

lation parameters turned out to be computationally expensive to implement, and often
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was not able to converge depending on the complexity of the correlation structure used.

Therefore, I followed the approach for dealing with autocorrelation of the authors in [9].

In this paper, the authors used the generalized additive model framework to perform short

term forecasting of hourly electricity load data. While they separately model each hour

of the day, they used lagged version of both the dependent and independent variables to

address the autocorrelation of the data. Their data and methods are readily applicable

to my use case in this report.

2.1 Connection to Spectral Analysis

The penalty parameter λ can also be thought of as a low-pass filter, where a given value

of λ specifies the maximum allowed frequency. Lower values of λ would allow higher

frequency, or rougher, splines, and higher values would futher restrict higher frequen-

cies.

It can therefore be seen that, for time series data, smoothing splines are intimately tied

to the representation of a time series in the frequency domain. In fact, [8] show that a

HP-Filter, which is used for time series decomposition, is a type of smoothing spline, as it

has been defined thus far. In this context, different values of the λ parameter can be seen

as filtering for the different components of a time series. [8] explain that in the limit as

λ −→ ∞, the smoothing spline would approach a trend line, where the infinite curvature

penalty causes the sum of the squared second derivates to approach zero.

In their original paper describing the HP filter, [7], Hodrick and Prescott derive, for

quarterly GDP data, a penalty parameter value of λ = 1600. This value is derived from

contextualizing the smoothing parameter as a ratio of the variance of the long and short

phases of the time series. As explained in their overview, [8] discuss the further research

that attempted to quantify the appropriate values for the smoothing parameter for time

series data measured yearly or monthly. However, [8] argues that a more robust and

generalizable approach would be to determine λ strictly from the data rather than on
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purely theoretical grounds.

2.2 Cyclic Smoothing Splines

To bring this idea of estimating curves of different frequencies back into the world of

smoothing splines, we can use the idea of cyclic smoothing splines. A cyclic smoothing

spline fits periodic data, such as hourly, daily, or quarterly, and fits a smoothing spline

which can be repeated across multiple period windows. A cyclic spline must have the

value of the spline, as well as its first and second derivatives, be equal at the breakpoints

between two periodic windows.

3 Dataset

The dataset used for this analysis will be hourly traffic count data in the USA. The dataset

is dissagregated to the level of a traffic monitoring station, which has a specific location

(lat, long) associated with it. Traffic measuring stations can have different purposes, such

as for survey purposes, for traffic safety purposes, and others. Additionally, the types of

roads can differ, such as rural roads and interstate highways.

In the context of this assignment, the hourly data will be analyzed at the level of a traffic

count monitoring station. I have chosen to pick one monitoring station near where I live

in the Portland, USA metro area, with no loss of generality given the data driven nature

of the exercise.

4 Methodology

This analysis will be approached in the context of attempting to explicitly model the

different levels of seasonality in the using the general additive model framework. Traffic

count data has several different trend and seasonal components within it, which makes it

a well suited dataset for modelling these differing cyclical lengths. Based on a theoretical
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foundation of traffic behavior, we would expect several periodic levels to be present in

this data:

. Intra-day seasonality, where the peak traffic count occurs in the mid-to-late after-

noon, and the daily minima occur in the late night/early morning.

. Inter-day/weekly seasonality, where different days of the week will show higher/lower

traffic counts. For example the average traffic count should be lower on the weekends

due to lower commuting volumes than during the week

. Monthly seasonality, several different factors, including weather, tourism, and others

will influence a varying traffic count level throughout the year.

. While we would expect a multi-year global trend, since this data only spans 1 year,

a global trend cannot be separately identified.

The mgcv package is well suited to this methodological approach. With this package, a

multivariate generalized additive model can be specified. Since this estimation will be

the combination of multiple cyclic cubic smoothing splines based on differing time period

levels, a multivariate setting is necessary.

As touched on earlier, this is highly related to the idea of the fourier transform, which

expresses a time series in terms of a summation of sine and cosine waves within a range

of frequencies. Therefore, the goal of this analysis will be to explicitly model the set of

frequencies outlined above. To confirm that this theoretical interpretation of the most

significant frequencies is correct, a spectral decomposition will be applied to the data to

verify these hypotheses.

5 Analysis and Estimation

Figure 1 shows the initial time series plot of the entire dataset, and a randomly selected

2-week subset of the dataset. The daily and weekly cyclical nature is readily apparent.
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The cyclical nature postulated in the methodology section is confirmed by the spectral

decomposition shown in Figure 2, which shows that the daily cycle is by far the strongest,

and obscures identification other cycles.

To approach this estimation, two variations of the GAM will be applied to this data. One

will assume that the different periodic time scales have an additive relationship, and the

other won’t make this assumption.

Additionally, the standard assumption that εt is a white noise is unlikely to hold for this

data, so this assumption will be modified to allow the error terms to follow some kind

of ARMA process. The identification of this serial correlation will be initially done in

a two-step approach, first fitting the GAM models, then identifying the autocorrelation

structure of the residuals using the auto.arima function in the forecast package in R,

and re-estimating the GAM model with the correct AR and/or MA values.

Therefore, the first model is:

TrafficCountt = f1(Hourt) + f2(Dayt) + f3(Montht) + εt

The cyclic cubic smoothing splines for the daily and weekly periods are shown separately

in Figure 3. They are shown in a 3D plot in Figure 4. Given the initial time series plot

and spectral decomposition in Figures 1 and 2, these results seem good. Additionally, the

adjusted R2 for this model is 89.5%, and all the spline terms are significant. However,

as expected, there is strong serial correlation in the residuals. The fitted vs. true values,

residuals, and ACF/PACF of the residuals are plotted in Figure 5.

The ACF and PACF of the residuals indicate that the smoothing splines haven’t fully

accounted for the autocorrelation of the series at the daily and weekly level. This should

make sense as the cyclic aspect forces a repetition of the splines in Figure 3 through the

entire dataset. Because of this property, this estimation is missing pertinent information
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about the actual level of recent values.

To account for this, a few AR terms should be included so that the level of the cyclic

smoothing splines can be adjusted to more closely match the stochastic change throughout

the full time span. Additionally, the forced additive relationship between the daily and

weekly cycles is restrictive and is relaxed in the second model.

The second model, where T = {1, 2, 3, 24, 168}, is:

TrafficCountt = f1(Hourt, Dayt) + f2(Montht) +
∑
j∈T

fj(TrafficCountt−j) + εt

The 3D relationship between the daily and weekly cycles and Traffic Count are shown

in Figure 6. Additionally the fitted values compared to the true values, the residuals,

and the ACF/PACF of the residuals are shown in Figure 7. Inspecting the plot of the

residuals, as well as the ACF and PACF graphs, this model appears to be much closer to

satisfying the assumption of uncorrelated errors. Running the auto.arima function on the

residuals returns a model with no additional AR or MA terms, lending further evidence

that this is a correct specification.

In this specification, all the spline terms are significant, and the adjusted R2 has jumped

to 98.6%, indicating a much closer fit to the data. This is to be expected given the extra

information provided by the lagged values of the dependent variable. Additionally, the

GCV score is lower in this model by about a factor of 10.
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A Figures and Graphs

Figure 1

Figure 2
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Figure 3

Figure 4
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Figure 5

Figure 6
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Figure 7
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B R Code

1 ###############################################

2 # Library Importation

3 ###############################################

4 library(tidyverse)

5 library(data.table)

6 library(stats)

7 library(pspline)

8 library(mapproj)

9 library(lubridate)

10 library(ASSIST)

11 library(TSA)

12 library(nlme)

13 library(bigsplines)

14 library(splines)

15 library(mgcv)

16 library(ggplot2)

17 library(forecast)

18

19 ###############################################

20 # Data Importation

21 ###############################################

22

23 data_dir <- paste0(getwd(), "/archive")

24

25 stations_file <- paste0(data_dir , "/dot_traffic_stations_2015. txt")

26

27 stations <- read.csv(stations_file , sep=’,’)
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28 stations$fips_county_code <- sapply(stations$fips_county_code ,

function(x) {str_pad(x, 3, side=’left’, pad="0")})

29 stations$fips_state_code <- sapply(stations$fips_state_code ,

function(x) {str_pad(x, 2, side=’left’, pad="0")})

30

31 df <- read.csv(paste0(data_dir , "/trimmed.csv"), sep=’,’)

32 df$station_id <- str_pad(df$station_id, 6, side=’left’, pad=’0’)

33

34 ###############################################

35 # Data Cleaning and Preparation

36 ###############################################

37

38 pdx <- ’003011 ’ #Get a station in the Portland metro area

39

40 #Aggregate the data by datetime and station_id

41 data <- aggregate(df$TrafficCount , by=list(df$datetime ,

df$station_id), FUN=sum)

42 names(data) <- c("datetime", ’station_id’, ’TrafficCount ’)

43

44 data <- data[data$station_id == pdx , ] #Filter to chosen station id

45

46 data$Daily <- rep(1:24 , 365) #Create a list of repeating hours of

the day

47 data$Weekly <- wday(data$datetime , week_start =1) #Get the day of the

week

48 data$Month <- month(data$datetime) #Get the month number

49 #Convert the datetime to a posix variable

50 data$datetime <- as.POSIXct(strptime(data$datetime , "%Y-%m-%d
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%H:%M:%S"), tz=’GMT’)

51

52 data$Time <- 1:dim(data)[1] #Column for the time index

53 data$station_name <- "Portland Metro" #Name the station

54 data$Date <- as.Date(data$datetime) #Get just the date portion of

the datetime

55

56 #Get a set of lags of the Traffic Count variable to handle

autocorrelation

57 data$Lag1 <- shift(data$TrafficCount , 1)

58 data$Lag2 <- shift(data$TrafficCount , 2)

59 data$Lag3 <- shift(data$TrafficCount , 3)

60 data$Lag24 <- shift(data$TrafficCount , 24)

61 data$Lag48 <- shift(data$TrafficCount , 48)

62 data$Lag168 <- shift(data$TrafficCount , 168)

63

64 ###############################################

65 # Exploratory Analysis of Data

66 ###############################################

67

68 #Generate a random starting index for a 2 week length for initial

plot

69 len <- 24*7*2

70 start <- runif(1, 169, dim(data)[1])

71

72 ymin <- min(data$TrafficCount) #Get minimum of the data

73 ymax <- max(data$TrafficCount) #Used for defining the y-axis maximum

74
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75 png("InitYearPlot.png") #Call the png function in base R

76 layout(matrix (1:2, nrow =2)) #Make a plotting grid

77 #Plot the full dataset of the traffic count per hour

78 plot(data$datetime , data$TrafficCount , type=’l’, col=’black’,

79 xlab=’Datetime ’, ylab=’TrafficCount ’, ylim=c(0, ymax),

80 main="Hourly Traffic Count , 2015",

81 cex.lab=1.5, cex.axis =1.5, cex.main =1.5)

82 #Plot just the randomly chosen two week subset

83 plot(data[start:(len + start),]$datetime ,

84 data[start:(len + start) ,]$TrafficCount , type=’l’, col=’black’,

85 xlab=’Datetime ’, ylab=’TrafficCount ’, ylim=c(0, ymax),

86 main="Hourly Traffic Count , 2 Weeks",

87 cex.lab=1.5, cex.axis =1.5, cex.main =1.5)

88 dev.off() #Store the plot as a png file

89

90 #Get the periodogram dataframe , showing the spectral density at

frequencies

91 ft <- periodogram(data$TrafficCount , plot=FALSE)

92 ft <- data.frame(ft$freq , ft$spec) #Put into a dataframe

93 names(ft) <- c("freq", ’spec’) #Rename the columns

94 ft$Hours <- 1/ft$freq #The inverse of the frequency is the number of

hours

95

96 png("InitSpec.png") #Develop a plot of the spectral density

97 layout(matrix (1:2, nrow=2, ncol =1)) #Two column plotting grid

98 #Plot the full frequency series of the spectral density

99 plot(ft$Hours , ft$spec , type=’l’, col=’black’, xlab=’Hours’,

100 ylab=’Spectral Density ’, main="Spectral Density , All
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Frequencies",

101 cex.lab=1.5, cex.axis =1.5, cex.main =1.5)

102 #Plot just the first week , 168 hours of the spectral density

103 plot(ft[ft$Hours <= 168,]$Hours , ft[ft$Hours <= 168,]$spec , type=’l’,

104 col=’black’, xlab=’Hours ’, ylab=’Spectral Density ’,

105 main="Spectral Density , 1 Week", cex.lab=1.5, cex.axis =1.5,

cex.main =1.5)

106 dev.off() #Store as a png

107

108 ###############################################

109 # Generalized Additive Model Estimation

110 ###############################################

111

112 ######################################################

113 # First GAM model , testing chosen variables groupings

114 ######################################################

115

116 #Specifying cyclic cubic splines with the correct periods , also

constraining

117 # them to have an additive relationship.

118 mod1 <- gam(TrafficCount ~ s(Daily , bs=’cc’, k=24) + s(Weekly ,

bs=’cc’, k=7) +

119 s(Month , bs=’cc’, k=12),

120 data = data , family = gaussian)

121

122 png("Mod1_2D.png", units=’mm’, res =300)

123 layout(matrix (1:3, nrow = 1)) #2 column plotting grid

124 plot(mod1 , shade = TRUE , ylab=’TrafficCount ’, cex.lab=1.5,
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cex.axis =1.5,

125 cex.main=4, main=’Cyclic Splines ’) #Plot the model

126 dev.off()

127

128 png("Mod1_3D.png", units=’mm’, res =300)

129 vis.gam(mod1 , view=c(’Daily’, ’Weekly ’), n.grid = 50, theta = 135,

phi = 32, zlab = "", ticktype = "detailed", color = "topo",

130 main="Model1 Daily , Weekly Additive",

131 cex.lab=2.5, cex.axis =2.5, cex.main =4)

132 dev.off()

133

134 #Get the residuals , fitted values

135 res_1 <- mod1$residuals

136 mod1_fit <- mod1$fitted.values

137 min1 <- min(ymin , min(mod1_fit)) #Get min and max for plotting

138 max1 <- max(ymax , max(mod1_fit))

139

140 png("Model1.png", units=’mm’, res =300) #Store the model

141 layout(matrix (1:4, nrow = 2, ncol =2)) #Get 2x2 grid for plotting

142 #Plot a random subset of the fitted values and the true values

143 plot(data[start :( start+len),]$datetime ,

144 mod1_fit[start:(start+len)], ylab=’TrafficCount ’,

xlab=’Datetime ’,

145 ylim=c(min1 , max1), col=’blue’, type=’l’, main="Model 1

Fitted/True Values",

146 cex.lab=1.5, cex.axis =1.5, cex.main =3)

147 lines(data[start:(start+len),]$datetime ,

data[start:(start+len),]$TrafficCount , ylab=’TrafficCount ’,
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xlab=’Datetime ’, ylim=c(min1 , max1), col=’red’)

148 #Get the legend

149 legend(’topright ’, c("Fitted", ’True’), fill=c("blue", ’red’))

150 #Plot the ACF up to 200 lags

151 plot(acf(res_1, lag=200, plot=FALSE), ylim=c(-0.4, 0.8),

152 main="ACF of Model 2 Residuals", cex.lab=1.5, cex.axis =1.5,

cex.main =1.5)

153

154 #Plot the random subset for the true values

155 plot(data$datetime , res_1,

156 ylab=’GAM Residuals ’, xlab=’Datetime ’, ylim=c(min(res_1),

max(res_1)),

157 col=’green’, type=’l’, main="Model 1 Residuals",

158 cex.lab=1.5, cex.axis =1.5, cex.main =3)

159 legend(’bottomright ’, ’Residuals ’, fill=’green’)

160

161 #Plot the PACF values for lags up to 200

162 plot(pacf(res_1, lag=200, plot=FALSE), ylim=c(-0.4, 0.8),

163 main="PACF of Model 2 Residuals",

164 cex.lab=1.5, cex.axis =1.5, cex.main =1.5)

165 dev.off()

166

167 #See what AR and MA terms should be included based on the residuals

168 arima1 <- auto.arima(mod1$residuals , stationary=TRUE , seasonal=TRUE)

169

170 #####################################################

171 # Second GAM model relaxing additive model assumption , including

AR terms
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172 ####################################################

173

174 #Add AR terms to model the autocorrelation present in the time series

175 mod2 <- gam(TrafficCount ~ t2(Daily , Weekly , bs=c(’cc’, ’cc’),

k=c(24, 7)) +

176 t2(Month , bs=’cs’) +

177 t2(Lag1 , bs=’cs’) + t2(Lag2 , bs=’cs’) + t2(Lag3 ,

bs=’cs’) +

178 t2(Lag24 , bs=’cs’) + t2(Lag168 , bs=’cs’),

179 data = data , family=gaussian)

180

181 png("Mod2_3D.png", units=’mm’, res =300)

182 vis.gam(mod2 , view=c(’Daily’, ’Weekly ’), n.grid = 50, theta = 135,

183 phi = 32, zlab = "", ticktype = "detailed", color = "topo",

184 main=’Model2 Daily , Weekly with AR Terms’,

185 cex.lab=2.5, cex.axis =2.5, cex.main =4)

186 dev.off()

187

188 #Get the fitted values and residuals from the second model

189 mod2_fit <- mod2$fitted.values

190 res_2 <- mod2$residuals

191 min2 <- min(ymin , min(mod2_fit))

192 max2 <- max(ymax , max(mod2_fit))

193

194 png("Model2.png", units=’mm’, res =300) #Store the plot in a png file

195 layout(matrix (1:4, nrow = 2)) #Layout a 2x2 grid for plotting

196 #Plot the fitted and true values for the chosen subset of data

197 plot(data[start :( start+len),]$datetime , mod2_fit[start :( start+len)],
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198 ylab=’TrafficCount ’, xlab=’Datetime ’, ylim=c(min2 , max2),

col=’blue’,

199 type=’l’, main="Model 2 Fitted/True Values",

200 cex.lab=1.5, cex.axis =1.5, cex.main =3)

201 lines(data[start:(start+len),]$datetime ,

data[start:(start+len),]$TrafficCount ,

202 ylab=’TrafficCount ’, xlab=’Datetime ’, ylim=c(min2 , max2),

col=’red’)

203 legend(’topright ’, c("Fitted", ’True’), fill=c("blue", ’red’))

204 #Plot the ACF of the residuals of the 2nd model

205 plot(acf(res_2, lag=200, plot=FALSE), ylim=c(-0.4, 0.8),

206 main="ACF of Model 2 Residuals", cex.lab=1.5, cex.axis =1.5,

cex.main =5)

207 #Plot the residuals of the 2nd model for the full dataset

208 plot(data [169: nrow(data),]$datetime , res_2[169: nrow(data)],

209 ylab=’GAM Residuals ’, xlab=’Datetime ’, ylim=c(min(res_2),

max(res_2)),

210 col=’green’, type=’l’, main="Model 2 Residuals",

211 cex.lab=1.5, cex.axis =1.5, cex.main =3)

212 legend(’bottomright ’, ’Residuals ’, fill=’green’)

213 #Plot the PACF of the residuals of the 2nd model up to 200 lags

214 plot(pacf(res_2, lag=200, plot=FALSE), ylim=c(-0.4, 0.8),

215 main="PACF of Model 2 Residuals", cex.lab=1.5, cex.axis =1.5,

cex.main =5)

216 dev.off()

217

218 auto.arima(mod2$residuals , stationary=TRUE , seasonal=TRUE)
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