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Abstract

In this paper, I extend the portfolio optimization with options approach layed

out in Faias and Santa-Clara (2017). I do this by replacing their use of an ad-

hoc procedure to estimate realized volatility by introducing a rolling GARCH(1, 1)

model to estimate the volatility of log returns. Additionally, this optimization is

done on a more recent set of options data, which includes the COVID pandemic.

Contrary to Faias and Santa-Clara (2017), I find a lower sharpe ratio from the

options optimization compared to the S&P500 in the updated time period. I find

that when the size of the optimized weights are not cutoff, the model takes an

extreme short position in ATM calls of -23.4% in response to the Covid shock,

which partially mitigates the loss from the bear market.
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1 Introduction

Portfolio optimization, or portfolio selection, contains theories and techniques from a

broad range of subjects. It is an important area of research for both academics and

investors, and can provide a mathematical grounding for trading decisions while reducing

risk exposure. A portfolio optimization model can also be the foundation for an automated

trading software program, which Malmgren and Stys (2011) notes accounted for an average

of 60%, and sometimes up to 80%, of equity trading volume on the flash crash of May

6, 2010. Developing an automated options trading program that can be deployed for

actual retail trading is, in fact, the initial motivation of this paper. Portfolio selection is

the theoretical economic foundation upon which an automated trading program is built,

so this paper represents the first step in the trading programs’ development. Further

considerations and extensions to transition this model to application in real world trading

are discussed in Section 6.

Portfolio selection was popularized with the seminal paper by Markowitz (1952). That

paper applied a mean-variance framework to optimize the set of weights of a portfolio of

stocks. Since then, there have been many extensions to this portfolio selection approach.

This paper extends the optimization on a basket of stocks to a basket of options. For an

overview on the basics of options, see Appendix A. While portfolio selection with options

has traditionally been less common in the literature, there are good reasons to include

them. Zhao and Palomar (2018) discuss two, (1) while under the scrict Black-Scholes

assumption of no riskless arbitrage, returns from any option portfolio can be replicated

with a portfolio of stocks, in the real world, including options can achieve excess returns;

(2) options allow the investor to make directional bets on stock price movements, limiting

certain risk exposure. While portfolio selection with options is not as common, Zhao and

Palomar (2018) utilize the mean-variance framework as in Markowitz (1952), and add

options into the optimization problem. They use the Black-Scholes assumption of stock

returns following a geometric brownian motion to optimize the set of weights.
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This paper, however, most closely follows the work in Faias and Santa-Clara (2017),

who introduce an expected utility function in place of the mean-variance optimization.

They argue, for three main reasons, that the mean-variance framework is not well suited

to options. First, option returns are not effectively described by their first and second

moments. Second, large amounts of historical options data is difficult to acquire, so

distributional estimation is imprecise. Third, the bid-ask spread introduces transactions

costs which are hard to account for in the mean-variance framework.

The last consideration of the portfolio selection problem, specifically in the context in-

cluding option contracts, is whether the options are held until expiration or the portfolio

is dynamically rebalanced. Zhao and Palomar (2018) directly extend the dynmically re-

balanced stock portfolio of Markowitz (1952) by using the Black-Scholes option pricing

model to analytically formulate the change in the value of a portfolio containing a basket

of stocks and option contracts. Following Faias and Santa-Clara (2017), I conduct the

portfolio selection problem with options assuming the options are held until expiration.

While simpler to implement, this method does have a couple disadvantages. First, hold-

ing until expiration relies on long term return estimation, one month in the case of this

paper, which can be unreliable. Additionally, holding until expiration does not allow the

investor to exit their position if the risk exceeds their tolerance or the market moves in

an unfavorable direction. Dynamic rebalancing is further discussed in Section 6.

An overview of the optimization assumptions applied in this context provides some foun-

dation for the portfolio selection approach in this paper, as well as context for future

research and extensions. Hannah (2015) provides an excellent summary of the data set-

tings for an optimization problem. Additionally, the other important consideration in

structuring an optimization model is whether it is possible to formulate as convex.

For some objective function to be minimized, F(x, ξ), where ξ ∈ Ξ is a random variable

and x ∈ X is the choice variable, I will assume that (1) ξ is exogenous of x such that x̂

does not affect the distribution of ξ; (2) The data generation is constructive such that
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given ξ, F(x, ξ) can be calculated for all x ∈ X; (3) The data is observational such that

data are generated a priori and new data cannot be generated. While these assumptions

are standard in the portfolio selection literature, they may not always hold. For example,

investment firms trading sufficiently large volumes are able to influence the future price of

an asset. As described in Gsell (2008), institutional investors use algorithms to slice large

orders into smaller ones to avoid adverse price movements through exhausting the current

liquidity in the market. This may even be a larger issue for options than for stocks, since

the liquidity of an option contract can vary significantly depending on its moneyness.

In this paper, only S&P500, a highly liquid asset, is considered, and potentially illiquid

far out of the money contracts are also not considered. However, generalizing the model

to include other assets or further out of the money options could lead to low liquidity

environments. In this case, assumption (1) may not hold.

Additionally, portfolio selection is not necessarily a convex optimization problem, it must

be specifically formulated to be convex. Markowitz (1952), Zhao and Palomar (2018), and

Faias and Santa-Clara (2017) assign real number weights to the set of options (stocks) as

the decision variables in the optimization. This makes the feasible set of the optimization

convex, and given the convex objective functions used, the entire problem by extension.

Convex optimization is more tractable and less computationally expensive than non-

convex, so the convex formulation is widely used in the literature. Non-convex extensions

are discussed further in Section 6.

In Section 2.1 I first provide an overview of the portfolio selection method, where I define

the objective function to be optimized, as well as how the returns are constructed. In

Section 2.2, I introduce the GARCH(1, 1) volatility that is used to model the volatility

of the underlying S&P500 asset. In Section 2.3, the detailed steps of the portfolio opti-

mization problem are presented. I show how optimizing for next period’s wealth can be

reformulated in terms of the option returns in the portfolio, accounting for the inclusion

of the risk-free asset. I then detail the realized returns in terms of the optimized weights

which are used to evalutate the performance of the model. In Section 3, I describe the
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data sources for the options, risk-free asset, and underyling asset. I then describe the

multi-step data filtering process for preparing the options data. I show various summary

statistics and visualizations of each of the datasets, and comment on the historical behav-

ior of each. In Section 4, I present the first period estimation of the rolling GARCH(1,

1) model, commenting briefly on the estimated parameters. In Section 5, I present the

additional variation of the model including the introduction of a cutoff to ensure adequate

shrinkage of the weights. I show that the optimization method performs worse than the

S&P500. I present detailed analyses of the optimized weights and returns, showing that

the model is generally net short on options, and long on the risk-free asset. I compare the

performance of the basic model with weight cutoff variation, and show that the restriction

induces worse performance. In Section 6, I conclude, review the model and findings, and

discuss areas for further research.

2 The Model

2.1 Portfolio Optimization Method

I now introduce the 6-step portfolio selection method, modeled after Faias and Santa-

Clara (2017). In this method, I use a risk free asset, modeled by the 1-month treasury

bill, and a risky asset underlying the call and put options, modeled by the S&P500.

The portfolio selection problem optimizes a set of weights among the risk free asset and

call/put options. Formally, denoting At as the wealth at time t, I solve:

max
Wt

E[U(At+1)|Ft]

Where Ft is the available information at time t, E is the expectation operator, and U is the

utility function specified later. Wt is the vector of weights allocated to each asset.

Additionally, I define St as the price of the underlying risky asset at time t, rft as the

risk free rate at time t, Ct,k (Pt,k) as the price of the call (put) option with strike price k
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at time t which expires at time t+ 1. Lastly, the continuously compounded returns of St

are defined as yt = log(St)− log(St−1)

Suppose that at time t, there are C number of call option contracts with strike prices

Kt,c1 , Kt,c2 , · · · , Kt,cC , and P number of put option contracts with strike pricesKt,p1 , Kt,p2 , · · · , Kt,pP .

Then the wealth at time t+ 1 is given by:

At+1 = At((1−
C∑
i=1

ωt,ci −
P∑
i=1

ωt,pi)rft +
C∑
i=1

ωt,cirt+1,c(Kt,ci) +
P∑
i=1

ωt,pirt+1,p(Kt,pi))

where rt+1,c(k) (rt+1,p(k)) denotes the return of the call (put) option with strike price k.

Formally:

rt+1,c(k) =
max{St+1 − k, 0}

Ct,k
− 1

rt+1,p(k) =
max{k − St+1, 0}

Pt,k
− 1

Finally, the portfolio returns, rpt+1 (i.e. rpt+1 = At+1

At
− 1) are defined as:

rpt+1 = (1−
C∑
i=1

ωt,ci −
P∑
i=1

ωt,pi)rft +
C∑
i=1

ωt,cirt+1,c(Kt,ci) +
P∑
i=1

ωt,pirt+1,p(Kt,pi)

Transaction costs are modeled through the bid-ask spread, and are incorporated through

duplicating the basket of option contracts into long and short side options. Long options

enter at the end of day ask price, and short options enter at the end of day bid price.

Incorporating the bid-ask spread in this way converts this model to a constrainted opti-

mization problem, with a no short-selling constraint such that Wt > 0. Short side option

returns enter the optimization model multiplied by −1. This is an important considera-

tion, and Santa-Clara and Saretto (2009) find that transaction costs and margin calls can

explain some of the pricing anomolies seen in the options market.

In the framework of this model, since St is a random variable conditional on Ft, then

rpt+1 is also conditionally random. Additionally, I rely on a simulation by replicating
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{rpnt+1|t}Nn=1 conditional on Ft, and transform it into {Ant+1|t}Nn=1. I then solve the following

maximization problem on the simulated next period wealth:

max
Wt

1

N

N∑
n=1

U(Ant+1|t)

which is described in detailed steps in Subsection 2.3. First, the GARCH volatility model

is introduced.

2.2 Returns

In this paper I assume that the log asset returns (yt) follow a normal distribution with

a time varying volatility term. Where Faias and Santa-Clara (2017) employ an ad-hoc

estimation of realized volatility, I consider a GARCH(1, 1) specification. Therefore, the

full model specification for the log returns of the underlying asset is given by the GARCH

(1, 1) with zero conditional mean:

yt = σtεt εt ∼ iid.N(0, 1)

σ2
t = ω + αy2t−1 + βσ2

t−1

ω > 0 α, β ≥ 0

As explained in further detail in Section 3, monthly price data for the S&P 500 is ob-

tained from the Case-Shiller index. This is used to estimate the GARCH(1, 1) model

via maximum likelihood. This estimation is done via a rolling estimation scheme where

the GARCH parameters are re-estimated at each time period given the newly available

data. The option data is available between January 2019 and May 2021, so volatility

forecasts are computed for this time period from the rolling GARCH model. Addition-

ally, the volatility forecast at time t + h uses the information of the actual yt at time

t+ h− 1.
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For each time period t+ h beginning in January 2019, the variance forecast is:

σ̂2
t+h = ω̂ + α̂y2t+h−1 + β̂σ̂2

t+h−1

The volatility is then σ̂t+h =
√
σ̂2
t+h

2.3 Portfolio Optimization Steps

• Step 1: Simulate log returns of the underlying asset

To simulate future log returns, the εt are simulated (ε̃t) using a bootstrapping method

from historical ε̂t, where ε̂t = yt
σ̂t

. This follows the filtered historical simulation method

in Barone-Adesi et al. (2008). At each time t, N samples are chosen with replacement

from the historical ε̂t series, time t inclusive. For a timespan of T months, this gives

a bootsrapped matrix of ε̃t of size T × N . The volatility forecast time series is then

multiplied by each of the N simulation for each of the time periods such that ỹnt+h =

σ̂t+hε̃
n
t+h ∀n ∈ 1, · · · , N .

• Step 2: Simulate next period prices of the underlying asset

For each period t+ h, and for each simulation n ∈ N , the simulated price is:

Snt+h|t+h−1 = St+h−1e
ynt+h

This yields a matrix of simulated asset prices with the same shape as the ỹt matrix.

• Step 3: Simulate option returns

The option returns are calculated assuming the contract is held until expiration. This
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means that the simulated payoff of a call and a put, ∀ n ∈ N , respectively are:

Cn
t+1|t(k) = max(Snt+1|t − k, 0) k = Kt,c1 , · · · , Kt,cC

P n
t+1|t(k) = max(k − Snt+1|t, 0) k = Kt,p1 , · · · , Kt,pP

rnt+1|t,c(k) =
Cn
t+1|t(k)

Ct,k
− 1 k = Kt,c1 , · · · , Kt,cC

rnt+1|t,p(k) =
P n
t+1|t(k)

Pt,k
− 1 k = Kt,p1 , · · · , Kt,pP

• Step 4: Simulate Portfolio Returns

Let rpnt+1|t denote the portfolio returns for a simulation n:

rpnt+1|t = rft +
C∑
i=1

ωt,ci(r
n
t+1|t,c(Kt,ci)− rft) +

P∑
j=1

ωt,pj(r
n
t+1|t,p(Kt,pj)− rft)

This can be vectorized be concatenating the call/put returns and weights.

rpnt+1|t(Wt) = rft + 〈Wt,R
n
t+1|t〉

Wt =
[
ωt,c1 , · · · , ωt,cC , ωt,p1 , · · · , ωt,pP

]
Rn
t+1|t =

[
rnt+1|t,c1 , · · · , r

n
t+1|t,cC , r

n
t+1|t,p1 , · · · , r

n
t+1|t,pP

]
−
[
rft, · · · , rft

]
• Step 5: Present utility function

I use a power utility function which has the property of constant relative risk aversion

(CRRA). Bliss and Panigirtzoglou (2004) estimate the CRRA parameter γ as 4 for the

S&P500 index option data, but I follow the use of γ = 10 by Faias and Santa-Clara (2017).

Using a higher gamma parameter that was estimated has a similar effect as shrinking the

portfolio weights, which is employed in practice as extreme portfolio weights would lead
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to increased risk exposure.

U(A) =

{
1

1−γA
1−γ, if γ 6= 1

log(A), if γ = 1

In terms of the vectorized implementation, across all N simulations, I maximize the mean

utility of next periods’ simulated wealth:

max
Wt

N∑
n=1

U(Ant+1|t) = max
Wt

N∑
n=1

U(At(1 + rpnt+1|t(Wt)))

Since At is known at time t and is independent of the decision variable Wt, this optimiza-

tion problem is equivalent to optimizing the simulated portfolio returns:

max
Wt

N∑
n=1

U(1 + rpnt+1|t(Wt))

• Step 6: Calculate Ex-Post returns

The vector of portfolio weights that solves the maximization problem in Step 5 can be

written as:

W∗
t = argmax

Wt

N∑
n=1

U(1 + rpnt+1|t(Wt))

The realized ex-post returns are calculated with a similar procedure as the simulated

returns. The realized underlying asset price at t+ 1, St+1 is used in place of Snt+1|t.

Ct+1|t(k) = max(St+1 − k, 0) k = Kt,c1 , · · · , Kt,cC

Pt+1|t(k) = max(k − St+1, 0) k = Kt,p1 , · · · , Kt,pP

rt+1|t,c(k) =
Ct+1|t(k)

Ct,k
− 1 k = Kt,c1 , · · · , Kt,cC

rt+1|t,p(k) =
Pt+1|t(k)

Pt,k
− 1 k = Kt,p1 , · · · , Kt,pP
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Then vectorizing as before:

rpt+1|t(W
∗
t ) = rft + 〈W∗

t ,Rt+1|t〉

Rt+1|t =
[
rt+1|t,c1 , · · · , rt+1|t,cC , rt+1|t,p1 , · · · , rt+1|t,pP

]
−
[
rft, · · · , rft

]

Next periods wealth is then:

At+1 = At(1 + rpt+1|t(W
∗
t ))

3 Data

The S&P500 monthly data was downloaded from Robert Shiller’s website, within the U.S.

Stock Markets 1871-Present and CAPE Ratio dataset. This is monthly data spanning

from January 1950 to May 2021, including more recent data than Faias and Santa-Clara

(2017). The S&P Composite price is used to calculate the log returns (yt), which are

calculated as yt = log(St)− log(St−1), where St is the monthly average of the underlying

S&P500 daily closing price.

Table 1 shows these summary statistics for the log returns and standardized returns.

While the autocorrelation, Ljung-Box test, and ARCH test statistics all show a meaningful

decrease in the standardized returns compared to the log returns, the skew and kurtosis

show only a modest reduction (-1.22 to -1.2, and 5.12 to 4.68 respectively).
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Table 1:
S&P 500 Index Returns Summary Statistics

Standardized returns, ε̂t = yt
σ̂GARCH
t

, are the estimated GARCH conditional volatility series. No. of

Observations, Skew, and Kurtosis are presented. Lag 1 autocorrelation, ρ1(z), and squared
autocorrelation, ρ1(z2), are additionally shown. Q1(z) is the Lag 1 LjungBox test of autocorrelation.

ARCH(1) is the Lag 1 Engle Test for Autoregressive Conditional Heteroskedasticity (ARCH).

Log Returns yt Standardized Returns ε̂t
Statistics 1950− 2018 2019− 2021 1950− 2021 1950− 2018 2019− 2021 1950− 2021

No. of obs. 828 33 861 828 33 861

Skewness −1.01 −3.7 −1.22 −0.89 −4.25 −1.2

Excess kurtosis 3.99 15.91 5.12 2.57 19.52 4.68

ρ1(z) 0.24 −0.02 0.22 0.18 −0.01 0.17

ρ1 (z2) 0.15 −0.04 0.11 0.0 −0.06 −0.01

Q1(z) 46.52 0.01 42.55 28.34 0.0 25.32

[0.0] [0.9] [0.0] [0.0] [0.96] [0.0]

ARCH(1) 19.35 0.06 10.74 0.02 0.09 0.15

[0.0] [0.81] [0.0] [0.9] [0.76] [0.7]

The option data is obtained from the Chicago Board of Exchange (CBOE), and spans

from January 2019 to May 2021. Table 2 gives a list of available variables.

Table 2:
CBOE Variable Descriptions

Data Descriptions are presented for the relevant
variables from the CBOE

Variable Name Description

underlying symbol Asset Symbol

quote date Quote Time

expiration Contract Expiration Date

strike Contract Strike Price

option type Contract Type: Call/Put

open Option Price at Open

close Option Price at Close

high High Option Price

low Low Option Price

Volume Contract Trading Volume

Figure 1 shows histograms of the historic log returns and standardized returns for all

months prior to January 15, 2019, the start of the CBOE data. Confirming the statistics

in Table 1, the distributions of both log and standardized returns show a negative skew,

departing from normality.
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Figure 1:
Historic Log/Standardized Returns

Histograms of historic log returns (yt) and standardized returns (ε̂t) are presented.
Time period spans from 1950 through 2018.

In order to remove unrealistic data, observations that meet any of these 3 criteria are

removed from the CBOE options dataset: (1) zero volume traded; (2) bid price lower

than $0.125, (3) bid price lower than ask price. These 3 filters correspond to the columns:

’Volume’, ’bid eod’, and ’ask eod’ respectively. The data is then filtered for expiration

dates that land on the 3rd Friday of each month. Then option quote times are filtered for

1 month to maturity, 28/29/30/31 days depending on the month and year. Figure 2 shows

the number of call and put contracts by date from the CBOE data after filtering.
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Figure 2:
Count of Option Contracts

Count of Contracts by date and by option type after CBOE option data was
filtered. Time span is from January 2019 to May 2021.

Then I further filter the option contracts used in the portfolio optimization by defining

four types of contracts. I define an at-the-money (ATM) call/put and an out-of-the-money

(OTM) call/put. ATM calls/puts are found by finding the contract for each date with

the lowest bid-ask spread and a moneyness between −1% to 1%. OTM calls/puts are

found in the same manner, however with moneyness from −5% to − 2% and 2% to 5%

respectively. Figure 3 shows a time series of these four contracts option closing prices.

While Covid was priced into the OTM/ATM puts in March 2020, it was priced into the

ATM call a month earlier in February. This indicates the options market believed the

S&P500 would increase from February to March, while in March, after the underlying

price had already dropped significantly, the options market believed that the underlying

price would continue to drop.
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Figure 3:
Option Prices Time Series

Time Series of option closing prices by type of contract. Time span is from January
2019 to May 2021. February 2020 is marked as a dotted line.

Table 3 shows summary statistics for the realized returns of these four contracts, as well

as for an even weighting between the four, the underlying S&P500, and the risk free asset.

Figure 4 shows the histograms of the actual returns of each of the four option contracts,

with extreme outliers removed. All four option contracts exhibit a positive skewness,

while an ATM call has the lowest skewness and kurtosis of the four contracts. The mean

returns of both ATM and OTM puts are larger than ATM calls, due to their large positive

tail returns. However their standard deviations lead to lower sharpe ratios than the ATM

call. The OTM call has a negative mean return, implying that shorting OTM calls could

be a profitable strategy. The positive mean returns of ATM and OTM puts is in contrast

to the time period used in Faias and Santa-Clara (2017), which may be due to the small

sample size and the outsized impact of the maximum returns in February 2020.
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Table 3:
Actual Returns for Options, S&P500, and Risk Free

ATM/OTM Call/Put show individual realized option returns for a hold until
expiration strategy. 1

N shows return for even weighting on each of the four
contracts. S&P500, Risk Free show actual returns for underlying asset and risk
free treasury bill respectively. Mean, Std, Min, Max are shown as percentages.

Mean Std Min Max Skew Kurtosis SR

ATM Call 13.5 98.3 -100.0 298.3 0.71 0.49 0.14

ATM Put 19.3 561.8 -100.0 2923.5 5.01 23.42 0.03

OTM Call -55.2 122.9 -100.0 498.1 3.53 12.62 -0.45

OTM Put 89.1 1018.2 -100.0 5383.4 5.10 24.04 0.09

1/N rule -19.6 107.8 -100.0 480.8 3.58 14.29 -0.18

S&P 500 1.7 5.1 -21.2 6.1 -3.41 13.10 0.33

Risk Free 0.1 0.1 0.0 0.2 0.23 -1.75 1.01

Figure 4:
Actual Returns by Option Type

Histograms of actual returns by option type for a hold until expiration strategy are
presented. Returns are percentages, time spans is from January 2019 to May 2021.

Returns larger than 1000% are removed for clarity.

To model the risk free asset, the 1-month treasury bill time series is used. The daily

data is downloaded from the Fred St. Louis Database (Ticker ”TB4WK”). This data is

then joined to match up with the quote time of the options in the filtered CBOE data.
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This produces a time series of annualized risk free returns, which I convert to monthly

returns and take as given in the optimization. Figure 5 shows the time series of the 1-

month treasury bill returns. While Figure 5 does not go all the way back to 1996 as in

Faias and Santa-Clara (2017), the average risk-free return from 2001 through 2013 is 1.57

times higher than the risk-free return in the red area, from 2019 through May 2021. As

discussed in further detail in section 5, this discrepancy may impact a strategy that tends

to choose longer positions on the risk free asset.

Figure 5:
Risk Free Asset Returns

Time Series of 1-Month Treasury Bill Returns from St. Louis FRED. Time span is
from August 2001 to August 2021. Time span of available option data is shown in red.

4 Estimation

The rolling window GARCH(1, 1) model described in section 2.2 is estimated using max-

imum likelihood at a monthly frequency, spanning from December, 2018 to May, 2021.

At each time period t, the data used to estimate the GARCH model spans from January,

1950 to t, inclusive. The estimation results for December, 2018 are shown in Table 4. All

three coefficients are significantly different from zero, although ω is 0 out to three decimal

points. Additionally, the marginal effect of the squared lag log return (α) is lower than

the marginal effect of the squared lag conditional volatility (β).
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Table 4:
GARCH(1, 1) Log Returns Model

GARCH(1, 1) model estimation summary is shown. The model is
estimated on log returns from January 1950 through December 2018.

coef std err t P> |t|

ω 0.000 0.000 3.508 0.000

α 0.125 0.038 3.309 0.001

β 0.783 0.037 21.404 0.000

Figure 6 shows a time series plot of the log returns and the conditional volatility using the

rolling GARCH procedure described in Section 2.2. The spikes in conditional volatility

for the great recession and the Covid pandemic are visible in Figure 6 as well.

Figure 6:
GARCH Time Series Plot

S&P500 log returns and GARCH(1, 1) conditional volatility are shown.
Period spans from January 1950 to May 2021. After January 2019,

conditional volatility values shown are forecasts.

Figure 7 shows a time series of the three GARCH(1, 1) parameters esimated through

the rolling scheme. There is some variation in the α̂ and β̂ parameter values across the

time period, concentrated in the first 12-18 months, while the ω̂ parameter shows little

variation. α̂ jumped 25% from March to April 2020, while β̂ showed a negligible decline.
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This can be interpreted that after the Covid shock, the impact of the previous log return

value on conditional volatility, through α̂, became more important.

Figure 7:
GARCH Parameters Time Series

GARCH(1, 1) time series of rolling ω̂, α̂, and β̂ parameters. Period spans
from December 2018 to August 2021.

5 Results

One additional variation of the portfolio optimization technique laid out in section 2 is

now presented. This model introduces a cutoff on the elements of the optimized portfolio

weight vector W∗
t , such that the simulated returns are set to 0 for contracts whose opti-

mized weights are greater than 10% in absolute value, then the optimization is run again.

While setting γ = 10 does induce some weight shrinkage, this variation models a scenario

where a trader enforces a cutoff for their single contract exposure.

5.1 Portfolio Optimization: Initial Model

Figure 8 shows a histogram of the monthly Ex-post returns. We can see that there is

a left skewness in the distribution, thus suggesting non-normality of the monthly option

returns. Additionally, both the highest and lowest monthly returns are centered around
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the beginning of the Covid pandemic. The lowest monthly return of -24.2%, as shown in

Table 5 and in full detail in Table 9 of Appendix B, occurs on the March 2020 expiration,

and the highest monthly return of 11.5% occurs the next month in April 2020. The lowest

return is larger in absolute value than the highest.

Figure 8:
Portfolio Optimization Returns

Histogram of portfolio optimization returns is shown. The time
period is January 2019 to May 2021.

Table 5 compares the summary of the monthly returns of the option portfolio optimization

with the returns of the S&P500. The Ex-post returns have a mean of -0.2% and a

standard deviation of 5%, resulting in a lower monthly sharpe ratio than the S&P500,

-0.03 vs. 0.33 in the time period of the data. Additionally, the Ex-post returns have a

lower absolute skew and kurtosis, implying that they are closer to normality than the

S&P500 returns.

Table 5:
Portfolio Optimization vs. S&P500 Returns

Summary statistics for the optimized portfolio and S&P500 returns are shown. The
time period is January 2019 to May 2021. Mean, std, min, and max are percentages.

The Sharpe Ratio (SR) is monthly.

Mean Std Min Max Skew Kurtosis SR

S&P 500 1.7 5.1 -21.2 6.1 -3.41 13.10 0.33

ExPost -0.2 5.4 -24.2 11.5 -2.75 11.83 -0.03
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Table 6 shows the summary statistics of the weights for each type of option contract in

the monthly optimization. Contrary to what would be expected from the actual returns

by contract in Table 3 of Section 3, the model is long OTM calls on average, while short

on average for ATM calls and OTM puts. Additionally, the range of the weights chosen

for the OTM call position, between the minimum and maximum, is much smaller than

the other three contracts. Figure 9 shows a time series representation of the weights per

contract, as well as the risk-free asset weights. This is also shown in detail in Table 9

of Appendix B. The risk-free asset weights range from 97% to 123% on the March 2020

expiration, where the model exploited the price spike in the ATM call with an extreme

short position (-23%). On average, the portfolio optimization model is a net seller of

options, and is in a net short position 83% of the months. The model overwhelmingly

shorts OTM puts, 93% of the months, with an average short position of -1%. Lastly,

OTM calls generally have a higher weight relative to OTM puts, while this is reversed for

ATM calls/puts.

Table 6:
Portfolio Optimization Weights

Mean, min, and max are presented for the optimized portfolio weights. The time
period is January 2019 to May 2021. All values are percentages.

ATM Call ATM Put OTM Call OTM Put

Mean -2.3 0.1 0.4 -1.2

Minimum -23.4 -3.1 -1.8 -9.6

Maximum 1.8 2.7 1.9 0.2
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Figure 9:
Portfolio Optimization Weights by Contract

Optimized weights from portfolio optimization are shown by option
type, as well as for the call-put difference and risk-free assset. The time

period is January 2019 to May 2021.

Figure 10 shows the cumulative returns from January 2019 to May 2021 for the portfolio

optimization model, the S&P500, and the risk-free asset. The initial wealth and February

2020 are marked with dotted lines. Prior to Covid, the cumulative returns of the risk-free

asset and the ExPost returns track relatively closely, however, each respond to the Covid

shock differently. The risk-free asset levels out, in accordance with Figure 5, while the Ex-

post returns and the S&P500 both experience steep losses, with the S&P500 experiencing

a 21% loss. However, the S&P500 bounces back more quickly, and has the highest ending

cumulative return of the three, with the Ex-post returns experiencing a small rebound

and then a leveling out.
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Figure 10:
Cumulative Returns

Cumulative returns for portfolio optimization, S&P500, and risk-free
asset are shown. The time period is January 2019 to May 2021, and

starting wealth is set to $100.

5.2 Portfolio Optimization: Cutoff Adjusted

Figure 11 displays a histogram of the cutoff adjusted Ex-post returns, and Table 7 displays

a table comparing these returns to the S&P500 returns. Contrary to what might be

expected, comparing Table 7 and Table 5, the largest loss for the cutoff adjusted model

is larger in absolute value than the basic model (-28% vs -24%). This can be explained

by the removal of the large short position in the ATM call from the basic model. While

shorting the high price of the ATM call in February 2020 wasn’t enough to offset the loss

from shorting the ATM put that month, it did partially mitigate it. Additionally, the

skew and kurtosis of the cutoff adjusted model are higher as well, meaning it is further

from normality than the basic variation.
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Figure 11:
Portfolio Optimization Returns: Cutoff

Adjusted

Histogram of portfolio optimization returns is shown. The time
period is January 2019 to May 2021. Simulated returns for

contracts with weights greater than 10% in absolute value are
forced to zero, and the optimization is rerun.

Table 7:
Portfolio Optimization vs. S&P500 Returns: Cutoff Adjusted

Summary statistics for the optimized portfolio and S&P500 returns are shown. The
time period is January 2019 to May 2021. Mean, std, min, and max are percentages.

The Sharpe Ratio (SR) is monthly. Simulated returns for contracts with weights
greater than 10% in absolute value are forced to zero, and the optimization is rerun.

Mean Std Min Max Skew Kurtosis SR

S&P 500 1.7 5.1 -21.2 6.1 -3.41 13.10 0.33

ExPost -0.3 6.1 -28.5 11.5 -3.24 13.98 -0.05

Comparing the optimized weights of the cutoff adjusted model in Table 8 with those of

the basic model in Table 6, the means are actually fairly similar. Looking at the weights

in more detail in Figure 12, we can see the effect of the cutoff adjustment on the risk-free

asset weights, which are lower when compared to the basic model in Figure 9. This is

especially true in the March 2020 expiration, where the basic model had a more extreme

spike (123% vs. 112%) in the optimized weight of the risk-free asset. This is due to the

discrepancy in the weights of the ATM call on the March 2020 expiration, which was
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heavily shorted in the basic model (-23.4% vs. 0%). Finally, since the loss was actually

larger in March 2020 in the cutoff adjusted model (-29% vs. -24%), removing the heavily

shorted ATM call was not advantageous in this situation. However, favoring the basic

model over the cutoff variation due to this result may be a case of overfitting, as reducing

an extreme weight may prove profitable in other settings.

Table 8:
Portfolio Optimization Weights: Cutoff Adjusted

Mean, min, and max are presented for the optimized portfolio weights. The time
period is January 2019 to May 2021. All values are percentages. Simulated returns
for contracts with weights greater than 10% in absolute value are forced to zero, and

the optimization is rerun.

ATM Call ATM Put OTM Call OTM Put

Mean -1.5 0.2 0.3 -1.2

Minimum -5.3 -3.1 -1.8 -9.6

Maximum 1.8 2.7 1.9 0.2

Figure 12:
Portfolio Optimization Weights by Contract: Cutoff

Adjusted

Optimized weights from portfolio optimization are shown by option
type, as well as for the call-put difference and risk-free assset. The time

period is January 2019 to May 2021. Simulated returns for contracts
with weights greater than 10% in absolute value are forced to zero, and

the optimization is rerun.
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Figure 13 displays the cumulative returns for a starting wealth of 100$ for the cutoff

adjusted model. The decreased performance of the cutoff adjusted model is visible, where

the more extreme loss in March 2020 is visible, and the ending wealth is lower compared

to the basic model ($85.49 vs. $90.70).

Figure 13:
Cumulative Returns: Cutoff Adjusted

Cumulative returns for portfolio optimization, S&P500, and risk-free
asset are shown. The time period is January 2019 to May 2021, and
starting wealth is set to $100. Simulated returns for contracts with

weights greater than 10% in absolute value are forced to zero, and the
optimization is rerun.
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6 Conclusion

The results of the portfolio optimization model presented in this paper show Ex-post re-

turns which are on average lower compared to both the S&P500 itself and the risk-free

asset. They also show a higher standard deviation and a lower sharpe ratio, in both the

basic model and the cutoff adjusted one. However, these returns show a lower skew and

kurtosis, implying they are closer to normality than the S&P500 returns. In both varia-

tions, the model chose to hold a net short position which allowed for a greater than 100%

investment in the risk-free asset in 83% of months. Negative cumulative returns would

generally imply a poor choice of model, but there are a couple potential explanations. If

February and March of 2020 are excluded, the sharpe ratio of the Ex-post returns is 0.14

in both model variations. This finding provides further evidence that drawing a definite

conclusion on the cutoff variation vs. the basic model may constitute overfitting. Ad-

ditionally, while still lower than the S&P500, it could mean that a larger sample would

smooth out the Covid volatility. Finally, a deeper analysis of the performance of GARCH

and other returns forecasting models is beyond the scope of this paper, and would require

a longer series of option data to ensure the results are robust.

This paper leaves several extensions open for future research and implementation to transi-

tion the option portfolio optimization model to real world trading. Since option contracts

can only be traded in integer quantities as opposed to stocks, making the optimization

non-convex by imposing an integer constraint would mean the results could be directly

traded on. While increasing the computational complexity, these results could be more

effectively tested against named option strategies such as the straddles, spreads, and con-

dors described in Chaput and Ederington (2003), among others. Additionally, using a

dynamic rebalancing strategy rather than held to expiration could prove to be more prof-

itable. This formulation does present some additional challenges, however, if a closed form

option pricing is not used to derive an analytical expression for the change in portfolio

value. In the case of the GARCH model used in this paper, for example, the future value

of the portfolio of options would need to be simulated and appropriately discounted. The
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dynamically rebalanced portfolio does have some advantages over the static hold until

expiration strategy, as noted by Zhao and Palomar (2018). Additionally, dynamic rebal-

ancing could occur on any time scale, independent of the expiration date, such as daily or

hourly, enabling more trading opportunities. Another extension would be to incorporate

further out of the money options, which would increase the choice set in the model, while

opening up the issue of low liquidity contracts. To address this, further research could

explore creating an effective metric to filter out low liquidity contracts. Lastly, as the

skew and kurtosis values of the standardized returns showed only a modest reduction

over the log returns in Table 1, the assumption of normality of the standardized returns

in the GARCH model in Section 2.2 may not be valid. Other models to simulate the

returns of the underlying asset could also be substituted and tested for their predictive

accuracy, including variations on the GARCH, time series methods, or neural networks,

among others.
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A Options Overview

Options are a type of financial derivative. The two types of basic options, calls and

puts, give the purchaser the right but not the obligation to buy or sell, respectively, the

underlying security at a future date and specified price. With a European option, the

holder of the option can exercise their position at the expiration date if they so choose.1

The seller, or writer, of the options must fulfill their end of the contract if the option

is exercised. As with stocks, buying an option is known as taking a long position, and

selling a short position.

The buyer of an option increases their choice set, thereby mitigating risk on the downside

for a call, and the upside for a put. The seller takes on the risk that the buyer will exercise

their option. Therefore, a buyer should pay the seller a cost for this shifting of risk. The

price payed for this exchange of risk is the option price.

The price at which the option holder has the right to buy or sell the underlying security

is called the strike price, commonly denoted K. The time in days until maturity of the

option, at its expiration date, is denoted T . The price of the option is denoted C and

P for calls and puts respectively, as in Faias and Santa-Clara (2017). The price of the

underlying asset at expiration is denoted ST . Option moneyness is defined as St

K
−1.

Figures 14 and 15 show the profit functions of a long call and a long put respectively. The

profit functions of the short side of each of these is obtained by multiplying by −1.

1An American option, not considered in this paper, gives the option holder the right to exercise at
any time. This early exercise ability makes the American option price higher than is European counter
part. Closed form option pricing models such as Black Scholes assume European options.
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The Profit is

max(Xt−Ki, 0)−Ci = (Xt−Ki)
+−Ci

Figure 14

The Profit is

max(Ki−Xt, 0)−Pi = (Ki−Xt)
+−Pi

Figure 15
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B Detailed ExPost Returns

Table 9:
Detailed Portfolio Optimization Returns

ExPost returns, and weights for each of the four contracts and the risk free asset are
shown. All values are in percentages.

Date Expiry ExPost ATM Call OTM Call ATM Put OTM Put Risk Free

2019-01-15 2019-02-15 -0.1 -0.1 -0.3 -0.8 -0.8 102.0

2019-02-15 2019-03-15 0.0 -0.7 0.2 0.8 -0.7 100.5

2019-03-18 2019-04-18 -1.8 -1.8 0.3 1.0 -0.8 101.2

2019-04-17 2019-05-17 -0.3 1.8 0.2 1.7 -0.8 97.1

2019-05-21 2019-06-21 2.2 -2.0 0.3 -1.0 -0.3 103.0

2019-06-19 2019-07-19 -2.7 -4.8 0.4 0.0 -0.5 104.8

2019-07-16 2019-08-16 3.5 1.0 0.1 1.6 -1.3 98.5

2019-08-20 2019-09-20 0.0 -3.2 0.8 -2.1 -0.3 104.8

2019-09-18 2019-10-18 2.3 -2.0 0.3 0.3 -0.7 102.1

2019-10-15 2019-11-15 -2.8 -1.8 0.3 -0.0 -0.6 102.2

2019-11-20 2019-12-20 -0.0 0.3 0.3 0.9 -0.9 99.3

2019-12-17 2020-01-17 0.9 1.0 0.0 1.7 -1.2 98.5

2020-01-21 2020-02-21 4.3 -4.4 0.4 0.2 -0.5 104.2

2020-02-20 2020-03-20 -24.2 -23.4 1.9 -1.7 0.1 123.1

2020-03-17 2020-04-17 11.5 -0.2 -1.8 -0.0 -9.6 111.6

2020-04-15 2020-05-15 1.2 -3.9 0.9 -2.6 -0.0 105.7

2020-05-19 2020-06-19 0.5 -1.2 1.1 0.1 -1.0 101.0

2020-06-17 2020-07-17 0.9 -2.3 0.8 -0.0 -1.6 103.1

2020-07-21 2020-08-21 -1.8 -3.5 1.9 1.3 -1.4 101.6

2020-08-18 2020-09-18 -2.8 1.3 0.7 2.7 -1.8 97.2

2020-09-16 2020-10-16 1.4 -1.4 0.3 -0.0 -0.9 102.1

2020-10-20 2020-11-20 2.4 -4.4 -0.0 -3.1 0.2 107.2

2020-11-18 2020-12-18 0.4 -0.9 0.0 0.2 -1.3 102.0

2020-12-15 2021-01-15 -0.5 -1.9 1.1 0.3 -1.4 101.9

2021-01-19 2021-02-19 1.1 -0.9 0.1 0.1 -1.5 102.2

2021-02-19 2021-03-19 1.9 -2.0 1.0 1.4 -2.3 101.9

2021-03-16 2021-04-16 -4.8 -5.3 -0.0 -0.5 -0.6 106.4

2021-04-21 2021-05-21 0.3 -0.3 0.2 0.4 -0.7 100.3

2021-05-18 2021-06-18 1.9 1.0 0.0 -1.0 -0.7 100.7

34



Table 10:
Detailed Portfolio Optimization Returns: Cutoff

ExPost returns, and weights for each of the four contracts and the risk free asset are
shown for the cutoff variation. All values are in percentages.

Date Expiry ExPost ATM Call OTM Call ATM Put OTM Put Risk Free

2019-01-15 2019-02-15 -0.1 -0.1 -0.3 -0.8 -0.8 102.0

2019-02-15 2019-03-15 0.0 -0.7 0.2 0.8 -0.7 100.5

2019-03-18 2019-04-18 -1.8 -1.8 0.3 1.0 -0.8 101.2

2019-04-17 2019-05-17 -0.3 1.8 0.2 1.7 -0.8 97.1

2019-05-21 2019-06-21 2.2 -2.0 0.3 -1.0 -0.3 103.0

2019-06-19 2019-07-19 -2.7 -4.8 0.4 0.0 -0.5 104.8

2019-07-16 2019-08-16 3.5 1.0 0.1 1.6 -1.3 98.5

2019-08-20 2019-09-20 0.0 -3.2 0.8 -2.1 -0.3 104.8

2019-09-18 2019-10-18 2.3 -2.0 0.3 0.3 -0.7 102.1

2019-10-15 2019-11-15 -2.8 -1.8 0.3 -0.0 -0.6 102.2

2019-11-20 2019-12-20 -0.0 0.3 0.3 0.9 -0.9 99.3

2019-12-17 2020-01-17 0.9 1.0 0.0 1.7 -1.2 98.5

2020-01-21 2020-02-21 4.3 -4.4 0.4 0.2 -0.5 104.2

2020-02-20 2020-03-20 -28.5 0.0 -1.6 1.8 -1.6 101.4

2020-03-17 2020-04-17 11.5 -0.2 -1.8 -0.0 -9.6 111.6

2020-04-15 2020-05-15 1.2 -3.9 0.9 -2.6 -0.0 105.7

2020-05-19 2020-06-19 0.5 -1.2 1.1 0.1 -1.0 101.0

2020-06-17 2020-07-17 0.9 -2.3 0.8 -0.0 -1.6 103.1

2020-07-21 2020-08-21 -1.8 -3.5 1.9 1.3 -1.4 101.6

2020-08-18 2020-09-18 -2.8 1.3 0.7 2.7 -1.8 97.2

2020-09-16 2020-10-16 1.4 -1.4 0.3 -0.0 -0.9 102.1

2020-10-20 2020-11-20 2.4 -4.4 -0.0 -3.1 0.2 107.2

2020-11-18 2020-12-18 0.4 -0.9 0.0 0.2 -1.3 102.0

2020-12-15 2021-01-15 -0.5 -1.9 1.1 0.3 -1.4 101.9

2021-01-19 2021-02-19 1.1 -0.9 0.1 0.1 -1.5 102.2

2021-02-19 2021-03-19 1.9 -2.0 1.0 1.4 -2.3 101.9

2021-03-16 2021-04-16 -4.8 -5.3 -0.0 -0.5 -0.6 106.4

2021-04-21 2021-05-21 0.3 -0.3 0.2 0.4 -0.7 100.3

2021-05-18 2021-06-18 1.9 1.0 0.0 -1.0 -0.7 100.7

35


	Introduction
	The Model
	Portfolio Optimization Method
	Returns
	Portfolio Optimization Steps

	Data
	Estimation
	Results
	Portfolio Optimization: Initial Model
	Portfolio Optimization: Cutoff Adjusted

	Conclusion
	Options Overview
	Detailed ExPost Returns

