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Abstract

In this project we use a combination of two different types of epidemiological models to study

the efficacy of a popular public health metric of the novel coronavirus, SARS-COV2 (Covid-

19) under different methodological and disease conditions. To this end, we simulate several

outbreaks, taking different assumptions for the underlying infectiousness of the disease, and

estimating the rate of transmission in these scenarios. We then forecast the progression of

future cases given our estimators. We find that using a non-parametric estimator of the

rate of transmission provides robustness when the shape of the underlying distribution of

infectiousness is unknown. We also note that the assumption of stable conditions makes

disease outbreak forecasting in a generalized sense more difficult.
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1 Introduction

The global pandemic brought on by the novel coronavirus, known as SARS-COV2 or Covid-19

has had far reaching public health, social, and economic consequences. It has affected every

country on earth to varying degrees, and has resulted in an unprecedented reduction in social

interactions and economic activity. In terms of loss of life and infected people, it has been the

largest global public health crisis in a century (Khalili et al., 2020). Because of its far ranging

social impacts, understanding epidemiological Covid-19 models and their economic ramifications

has been of particular interest to economists (see e.g. Toda (2020), Atkenson (2020), and Baker

et al. (2020) for early attempts of linking the predictions of an epidemiological model to their

economic consequences).

In this project, we survey the infectious disease modeling literature to understand how outbreaks

are simulated, estimated, and mitigated. In particular, we focus our attention on the Time Since

Infection model developed by Fraser (2007) and expanded by Cori et al. (2013), which appears

to be the backbone of one of the most important indexes of the evolution of a pandemic; the

reproduction number. In Section 2 and Section 3 of this paper, we will analyze a series of statis-

tical properties relating to this value and its estimates by simulating infections under different

scenarios and applying some of the estimating techniques found in the surveyed literature. Sec-

tion 4 explores the possibility to expand the results previously derived to the (real-world) case of

an evolving virus that gives rise to new variants with different levels of contagiousness. Lastly,

in Section 5 we apply some of these modeling techniques to estimate rates of transmission and

make short-term forecast using French Covid-19 infections data.

2 Data and Modeling Context

One of the main indicators used to monitor the evolution of the COVID-19 pandemic in many

countries is the reproduction rate, often denoted as R(t) (Istituto Superiore di Sanità, 2021).

This number, which represents the number of people an infected individual at time t can be

expected to infect assuming constant conditions (Fraser, 2007), is crucial to identify whether

the pandemic is increasing or decreasing1. In order to arrive at an analytical formulation of the

reproduction rate, however, it is necessary to specify a model of infection dynamics.

1corresponding to an R(t) > 1 or R(t) < 1, respectively.
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2.1 The Time Since Infection model

In line with the methodology used in our home countries, which employ an estimation technique

for R(t) based on Cori et al. (2013), we begin by specifying a Time Since Infection (TSI) model,

first introduced by Fraser (2007). In particular, we assume that the transmission of the virus

is a Poisson process, where the probability that an individual infects another one over a very

small time interval [t, t + ∆] is given by β(t, τ)∆. By aggregating infections at the population

level, we obtain the the mean incidence I(t), which is given by:

I(t) =

∫ t

0
β(t, τ)I(t− τ)dτ (1)

The interpretation of equation 1 goes as follows: the average number of individuals infected at

time t is given by the (integrated) sum of the individuals infected between 0 and t, weighted by a

function β(t, τ) that depends on the calendar time t and the time since the onset of the infection

on a given individual τ . The function β(t, τ) represents the transmissibility of the virus and it

reflects how much the pathogen is expected to shed at a given point in time t, given that it has

had a certain amount of days τ to reproduce inside the body of the host (time since infection). In

the case of COVID-19, it is reasonable to assume a single-peaked function, reflecting a period of

high infectivity due to a large reproduction of the virus in the host body, followed by a recovery

period in which the infected individual does not have “enough virus” inside of him/her to infect

others.2 The comparison of single and double peaked infectivity profiles, β(t, τ) is shown in

Figure 1.

A crucial assumption that will drive the rest of our identification strategy is that the infectivity

as a function of the time since infection τ does not depend on calendar time. In other words,

the average infectivity of an individual who has been infected for, e.g. 5 days, will be the

same irrespective of whether we observe it during the summer or during the winter, during a

lockdown or during a period of no generalized social distancing measures. This rather strong

assumption allows us to separate the function β(t, τ) into two separate functions, φ1(t) and

φ2(τ). Fraser (2007) shows how these functions can be normalized such that φ1(t) is equal to

the instantaneous reproduction number R(t) and that φ2(τ) reflects the distribution of how

the infections are spread over the time since infection τ , ω(τ). The former depends only on

2This shape, however, may not apply to other diseases, such as HIV for instance, which often presents two peaks:
one in the early stages of infection and a second one in the period preceding the death of the infected individual.
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Figure 1: Rough sketches of examples of two different β(t, τ)

calendar time while the latter depends on time since infection. These identities allow us to

rewrite Equation 1 as

I(t) =

∫ t

0
R(t)ω(τ)︸ ︷︷ ︸
β(t,τ)

I(t− τ)dτ (2)

As the first element is not dependent on τ , it can be pulled out of the integral, so that the

expression becomes:

I(t) = R(t)

∫ t

0
ω(τ)I(t− τ)dτ (3)

Under this formulation, we can indeed interpret R(t) as the reproduction number at time t and

ω(τ) as a distribution of how likely these secondary infections are, given the time since infection.

Truncating ω(τ) at τm such that the transmissibility after day τm is equal to zero leaves us with

the final model:

I(t) = R(t)

∫ τm

0
ω(τ)I(t− τ)dτ (4)

where we assume that ω(τ) = 0 for τ > τm. This implies in other words that an infected

individual will not be able to pass the infection after the time since infection τm.

2.1.1 Discretizing the TSI Model

Lastly, it is important to transform Equation 3 so that it can be applied to a real-world scenario,

where incidence is reported at daily intervals; i.e., with t representing one day, rather than an
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infinitely small interval of time. Using ∆ as our “very small” interval, we can approximate the

integral as a discrete sum as follows:

İ(u) = R(t)∆
N∑
n=1

ω(n∆)I(t− n∆) (5)

with t = N∆3. For instance, if we assume that infections happen once every 24th of a day (every

hour), we obtain:

Ĩ(t) =

24∑
n=1

İ(t−∆ + n∆) (6)

where the tilde denotes that the incidences are now obtained as the sum of a discretized process.

2.1.2 Deriving R̂(t)

Rearranging terms, we obtain an expression of R(t) than can be estimated from the data:

R̂(t) =
Ĩ(t)∑τm

n=1 Ĩ(t− τ)ω(τ)
(7)

Equation 7 highlights how the estimation of R̂(t) is dependent on the knowledge of ω(τ) which,

as mentioned above, is a distribution specific kernel denoting the probability that a secondary

infection will happen after τ days since the infection of an index case. Since this distribution is

not known to the researcher, however, the estimator in Equation 7 is not feasible. In order to

estimate R̂(t), the distribution of ω(τ) firstly has to be estimated which results in the feasible

estimator for R̂(t) that can be expressed as follows:

R̂(t) =
Ĩ(t)∑τm

n=1 Ĩ(t− τ) ω̂(τ)
(8)

2.2 Serial interval estimation

Many of the European countries we investigated take ω(τ) to be a Gamma distribution, with

mean of approximately 6 days and a variance of 2 (as in the Italian case, Cereda et al., 2020). In

other words, the probability of the event of a secondary infection will depend on the time since

infection τ of the index case, where the average τ will be 6 days and its variance 2 days. These

3Note that for n = 0 the product ω(0)I(t) = 0 which is why we start the summation at n = 1.
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estimates are derived from studies that try to describe the distribution of what is known as the

serial interval of a disease, and on whose methodology we will focus in the current section.

In order to estimate the function ω(τ) the ideal strategy would be to collect data about every

infection and to note down after how many days each index case infects a secondary case,

holding contact rates constant. This interval of time is known as generation time of a disease.

In reality, however, this information is hard to retrieve, as the exact time of the infection is

mostly unknown. Instead, researchers gather data on the serial interval, which is defined as the

amount of time that elapses between the onset of the symptoms in the index case and the onset

of symptoms in the secondary case. Figure 2 gives a graphical representation of the difference

between the two concepts. Notice, however, that if incubation times (the time that elapses

between the infection and the manifestation of symptoms) are independently and identically

distributed -a rather strong assumption, then the two values will be the same.

Figure 2: Serial interval and generation time. The vertical arrow indicates an infection event:
the amount of time between two consecutive vertical arrows (i.e., from index to secondary case)
is defined as the generation time (or generation interval), while the time elapsed between the
onset of the symptoms in the index case and in the secondary case is called the serial interval.
Source: Vink (2010).

Once observations about each infector-infectee pair are gathered, most studies adopt a para-

metric approach and estimate a set of parameters via Maximum Likelihood, where the fitted

distribution is most often either a Gamma, a Weibull, a Log-Normal (Nishiura, Linton, and

Akhmetzhanov, 2020) or in some cases a Normal distribution (which allows to account for nega-

tive values in the cases in which the symptoms manifest themselves in the secondary case before

they appear in the index case (Ali et al., 2020)). Figure 3 reports the results of a literature

review conducted by Rai, Shukla, and Dwivedi (2021), who surveyed the literature regarding the
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estimation of serial intervals for the COVID-19 case between January and August 2020, mostly

on Chinese data. The resulting average estimated mean of the serial interval is around 5.2 days,

with the 95% confidence interval being [4.37, 6.02] days.

Figure 3: Serial Interval estimation review in Rai, Shukla, and Dwivedi (2021). The first column
represents the individual serial interval study while the second column reports the estimated
mean with the 95% confidence interval. The third column reports the individual weight that
was assigned to the respective study by the authors.

2.3 Simulating a serial interval study

In this section we are concerned with the study of the properties of the estimates of a typical

serial interval study. In particular, we will look at how well the mean and variance of ω(τ)

are estimated in the context of only few observations -in many real-world studies, the average

number of infector-infectee pairs observed ranges between 20 to 50 [(Griffin et al., 2020), (Rai,

Shukla, and Dwivedi, 2021)]. Additionally, we are interested in the aggregation error; i.e., the

bias that is introduced in the estimation by the fact that the realizations of an event -in our

case, a secondary infection- are observed over finite intervals of time (most often at a daily level),

while the true process happens continuously, over infinitesimally small intervals.

In order to define the reference point of our estimates, we need to simulate infection data, by

creating several infector-infectee pairs. To do so, we must specify the process that generates the
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infections at an individual level. As the aggregated process of infections is derived under the

assumption that they follow a Poisson distribution (cf. Equation 1), we make the assumption

that this is also true at the micro level. Therefore, the average number of infections generated

over the interval of length ∆∗ [t, t + ∆∗] by an individual who has been infected for τ days is

given by P(λi), where λi can be interpreted as the infectivity of individual i and depends on

the calendar time and the interval length:

λi(t,∆
∗) = R(t)

∫ t

t−∆∗
ω(τ)dτ, i = 1, ..., N (9)

R(t) is assumed to be the same across all individuals and ω(τ) is a density function described

by a vector of parameters θ, which is our object of interest.

Again, in a real-world scenario only daily infections are reported, and we therefore need to derive

a discretized version of Equation 9. This is obtained via a transformation similar to the one

employed in Equation 5, which allows to write the individual infection process as P(λ̃i), where

λ̃i is given by:

λ̃i(t,∆) = R(t) ∆

1/∆∑
k=1

ω (τ + ∆− k∆), i = 1, ..., N (10)

Having obtained the expected number of infections generated throughout one day by an in-

dividual, we are ready to estimate the serial interval distribution ω(τ) by means of Maximum

Likelihood. In particular, we are interested in the vector of parameters θ̂ of a Gamma distribution

(namely, its shape and its rate) that maximize the likelihood of observing the infector-infectee

pairs in the sample at hand. The choice of a Gamma distribution is in line with the approach

followed by the literature, albeit other specifications can also be attempted (among the most

used ones despite the Gamma, are the Weibull and the Normal distributions, where the latter

is employed in the rare cases where negative values are present in the sample).

2.3.1 Properties of the serial interval estimates

In the context of the studies described above, different sources of bias need to be accounted for,

each of which will impact the final estimation of R(t) differently. A first potential bias arises

from a fact that has been duly stressed so far, namely that while infections occur in continuous

time (i.e., in infinitesimally small intervals), they are only reported on a daily basis. This will
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give rise to what we shall call the “aggregation error”. If all infections happened in a single

moment of the day, once per day, this error would be nonexistent, as the generating process

would be equivalent to the one observed. However, this is not case, and we therefore expect

that the farther the true process is from its observed, aggregated outcome, the greater the bias

of our estimate.

Secondly, we have already mentioned that the sample size in a typical serial interval study tends

to be relatively low, with some estimated serial intervals being based on fewer than 10 pairs of

infection (e.g. Li et al. (2020) and Huang et al. (2020)). This will of course impinge on the

precision of the estimated mean of the distribution of ω(τ), which will very likely have large

confidence intervals. (Li et al. (2020) for instance report a mean serial interval of 7.5 days, with

a 95% CI of [5.3, 19]). Small-sample bias will therefore also have to be evaluated.

Lastly, we are concerned about possible misspecification. Most studies employ a parametric

approach to the estimation of ω(τ), most often assuming that the underlying distribution is a

Gamma. Different specifications of this distribution will of course lead to different estimates. In

order to cope with this issue, we also propose to estimate ω(τ) non parametrically4.

Nonetheless, it is important to remember that all the biases listed above are only relevant in

the larger framework of the estimation of R(t). For instance, if the true underlying process

is described by a Weibull distribution with a vector of parameters θ1, but we estimate it via

a Gamma distribution defined by the vector of parameters θ2, this “misspecification error” is

only relevant if the resulting estimate of R(t) is likewise biased. Therefore, in order to assess

the relevance of these potential sources of bias described above, we propose to evaluate them in

light of the error that they give rise to in the final estimation of R(t).

In practice, we will simulate an epidemic according to the process described by Equation 5 and

compute the mean squared difference between R̂(t) and its true value R(t) for different estimates

of ω(τ). In order to assess the properties of the estimator under different scenarios, we consider

5 specifications of the true R(t): a constant R(t) of 1.8, an increasing one that starts at 1.5 and

gets up until 3, a decreasing one following the inverse path, an R(t) described by a polynomial of

degree 5, depicting two waves of the pandemic, and an inverted U-shaped R(t) with a maximum

value of 4 and a minimum of 0.

4In particular, we will use a Gaussian kernel with a bandwidth chosen according to normal scale rule: h =
1.059σ̂1/5, where σ̂ is the standard deviation of the observation in our simulated sample.
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2.3.2 Aggregation Error

The results of the estimation of ω(τ) and of its impact on R̂(t) are summarized in Figure

Figure 4, where the main focus lays primarily on the evaluation of the aggregation error. For

each of the 5 specifications of the true R(t), 1,000 serial interval studies were simulated for each

value of ∆ in Equation 10 ranging between 1 and 1/100. The average estimates of the mean

and variance of the serial interval (obtained via Maximum Likelihood Estimation by fitting a

Gamma distribution on our data5) are then plotted against the level of aggregation 1/∆ (upper

panels). The bottom panels, on the other hand, report the shape of the true R(t) used in that

particular specification and the Mean Squared Error of the R̂(t) that is obtained using as the

denominator in Equation 8 the ω̂(τ) estimated in the preceding step (i.e., described by the ML

estimates µ̂ and σ̂2 for each value of 1/∆):

MSER(t) =
1

T

T∑
t=1

(
R̂(t)−R(t)

)2
(11)

with T the number of days in our simulated pandemic.

The results point out several interesting features: firstly, the top left panel of each specification

shows that at low values of ∆ (high values of 1/∆) the estimated mean of the serial interval is

highly biased, with the bias decreasing as the level of aggregation increases. We explain this

result as follows: for low values of ∆ the simulated infections in the serial interval study are

the results of few draws from a Poisson distribution. Therefore, the number of infections that

are generated at each point in time (e.g., at each day for 1/∆ = 1) is subject to a great degree

of randomness. Conversely, when the infections are simulated over smaller intervals (i.e., when

∆ increases), the aggregation that is done at the daily level becomes an increasingly better

estimate of the expected number of infections on that given day. Nonetheless, a positive bias in

the estimated mean persists when ∆ → ∞, which is in the order of approximately 7% of the

true value of µ6. This result is robust across different functional forms of the true ω(τ) used in

the generation of the infections, represented by a each different color in the graph.

The estimated variance σ̂2, on the other hand, shows an opposite behavior: while the aggregation

error does not seem to cause a significant bias in its estimation, the misspecification one does;

in particular, the ML estimator obtained by fitting a Gamma distribution through our daily

5notice that a Gamma distribution Γ(α, β) is defined by a shape and a rate parameter α and β, respectively,
which we transform to mean and variance according to the following: µ = α

β
and σ2 = α

β2

6as a robustness check, we specified a serial interval of 10 days, which resulted in a bias of 5.5% of the true value.
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Figure 4: Results of the serial interval study simulation: each group of four panel represent a
different study, based on a given specification of R(t). The top-left panel in each group displays
the estimated mean of the serial interval for a given interval (expressed as a fraction of a day)
used to simulate the infections; the top-right panel reports the estimated variance of the serial
interval; the bottom-left panel shows the form chosen for the R(t) that generates the pandemic
over 140 days and on which R̂(t) is computed; the Mean Squared Error of the estimate of R(t)
is displayed in the bottom-right panel of each graph.
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observations performs best when (unsurprisingly) the true process is also generated by a Gamma

distribution -the blue line in the graphs, while when the serial interval is generated using a

Normal or a Weibull distribution -the golden and red lines, respectively, the bias increases (with

the Gamma distribution being a better estimate for the Normal case than the Weibull one).

Lastly, and most importantly, we focus on what these results imply in terms of the estimation

of R(t). This is shown in the bottom right panel of each graph, alongside a visualization of

the shape of the R(t) throughout the whole pandemic. Right away, we observe that the shape

of the MSE function is the same across the 5 specifications of the true R(t), with its lowest

value corresponding to low values of ∆. In order to make sense of this, we must look back at

Equation 5, which describes how the infections are generated in discrete time, and to Equation 6,

which offers an example about how the daily aggregation is constructed, so to match the way

infections are reported in real world. Indeed, when ∆ = 1, Equation 6 simplifies to İ(t), meaning

that the observed new infections correspond to the ones generated by the data. Conversely, as

∆ becomes smaller, this correspondence is lost and R̂(t) will consequently suffer some bias, as

we indeed observe in the bottom right panels of each graph. Focusing on the magnitude of the

bias, we see that it ranges between a minimum of 0.06 -for an unrealistic constant R(t), and 1.4

for the inverted-U scenario. The most realistic case of the “multiple waves” R(t), depicted in

Figure 4d, however, reports a bias of less than 0.1, even when our simulated infections happen

at a frequency of approximately 15 minutes (i.e., 1/∆ = 96) and irrespective of the underlying

distribution of ω(τ).

We therefore conclude that the strategy employed in serial interval estimation is naturally limited

in the identification of the true R(t), This is due to the reporting of cases at a daily basis, which

leads to the presented aggregation error. Given the different settings of R(t) under which the

pandemic evolves, however, this bias might be negligibly small.

2.3.3 Misspecification and Small Sample Bias

Departing from the aggregation error to the remaining two potential sources of a bias, the

misspecification error and the small sample, we once again conducted a Monte Carlo study.

Hereby, a pandemic was simulated according to Equation 4. This was repeated 1000 times

respectively for the five different settings of R(t), three different true underlying distributions for

the serial interval (Gamma, Normal, Weibull) and five different serial interval study sample sizes

11



(10, 20, 50, 100, 500). We firstly simulated the outbreak, on which we then conducted two serial

interval studies. One serial interval was estimated by fitting a gamma distribution as previously

stated, while in the second serial interval study we employed a nonparametric approach. Lastly,

we used the obtained serial interval estimates in order to estimate R̂(t) through the feasible

estimator specified in Equation 8. Similar to Subsubsection 2.3.2, we were not only interested

in how well the shape of the true serial interval was estimated, but also in the resulting effect

onto the estimates of R̂(t). In order to evaluate the results, the respective mean of µ̂ω, σ̂2
ω and

MSER(t) along with their standard deviations were recorded and are reported in Table 1.

In the results, we can easily observe aggregation error: the three different serial interval distribu-

tions were specified with µω = 7 and both approaches, the Gamma as well as the Nonparametric

(NP) approach consistently estimate µ̂ω at ≈ 7.5 across the three different true serial interval

distributions, the different specifications for R(t) as well as the varying sample sizes. While the

estimated µ̂ω is very similar for the two approaches, the Gamma approach tends to estimate

σ̂2
ω on average better across the specifications. The aggregation error is consistent across the

different sample sizes, where we see besides a decreasing standard deviation overall no improve-

ment in the identification of the serial interval distribution parameters. Considering the average

MSER(t), we observe across the different specifications that in most cases the Mean Squared Er-

ror drops initially comparably much when we go from 10 to 20 observations, but then decreases

at a slowing rate. This could be interpreted as evidence that the small sample bias reduces

quickly as we increase the number of infector - infectee pairs in the serial interval study. Given

the costly and challenging nature of such study in a realistic environment, a sample of 20 to

50 observations might hence already prove as a sufficient trade off for obtaining consistent esti-

mates of R(t). If we proceed to compare the average MSER(t) not across the respective sample

sizes but across the different specifications and the true serial interval distributions, it is evident

that the nonparametric approach has a on average considerably smaller Mean Squared Error

than the gamma approach. This confirms not directly the presumption of the misspecification

error since the gamma approach seems to perform relatively consistent across the specifications,

but nevertheless emphasizes the on average better performance of the nonparametric approach

compared to the parametric approach. Lastly, as in the previous scenarios, we see that the av-

erage Mean Squared Error differs considerably across the different specifications of R(t). In the

following sections we will exploit these differences further and extend the scope of our analysis.
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True dist: Gamma Normal Weibull

Evaluation: µ̂ω σ̂2
ω MSER(t) µ̂ω σ̂2

ω MSER(t) µ̂ω σ̂2
ω MSER(t)

R type Sample Gamma NP Gamma NP Gamma NP Gamma NP Gamma NP Gamma NP Gamma NP Gamma NP Gamma NP

Mean Constant 10 7.530528 7.530530 1.98 2.73 0.063 0.008 7.527872 7.527867 2.08 2.74 0.062 0.008 7.533368 7.533382 2.15 2.70 0.062 0.008

(SD) Constant - 0.361192 0.361206 0.72 1.00 0.031 0.010 0.338012 0.338020 0.79 0.97 0.029 0.009 0.335597 0.335601 0.86 0.94 0.030 0.009

Mean Constant 20 7.502261 7.502266 2.01 2.56 0.058 0.006 7.518890 7.518895 2.14 2.60 0.059 0.007 7.509000 7.508994 2.26 2.60 0.058 0.006

(SD) Constant - 0.242539 0.242533 0.50 0.65 0.020 0.006 0.242486 0.242493 0.58 0.65 0.021 0.006 0.243930 0.243938 0.63 0.62 0.021 0.006

Mean Constant 50 7.525607 7.525621 2.06 2.43 0.059 0.006 7.529128 7.529121 2.18 2.44 0.059 0.006 7.513229 7.513225 2.29 2.45 0.057 0.006

(SD) Constant - 0.155940 0.155946 0.32 0.39 0.013 0.004 0.155007 0.154997 0.36 0.38 0.013 0.004 0.150059 0.150066 0.38 0.35 0.013 0.004

Mean Constant 100 7.518910 7.518907 2.06 2.33 0.058 0.005 7.519391 7.519383 2.19 2.34 0.057 0.006 7.517806 7.517806 2.31 2.36 0.057 0.006

(SD) Constant - 0.110185 0.110182 0.23 0.27 0.009 0.003 0.106294 0.106302 0.25 0.26 0.009 0.002 0.112679 0.112685 0.29 0.26 0.009 0.003

Mean Constant 500 7.521478 7.521461 2.08 2.15 0.058 0.005 7.520649 7.520647 2.20 2.15 0.057 0.005 7.522504 7.522497 2.30 2.15 0.057 0.006

(SD) Constant - 0.047470 0.047486 0.10 0.11 0.004 0.001 0.048056 0.048059 0.11 0.10 0.004 0.001 0.049741 0.049739 0.13 0.11 0.004 0.001

Mean Increasing 10 7.537182 7.537190 1.97 2.70 0.323 0.038 7.530039 7.530039 2.01 2.64 0.322 0.040 7.514963 7.514977 2.14 2.69 0.313 0.039

(SD) Increasing - 0.345965 0.345971 0.73 1.04 0.158 0.046 0.351629 0.351629 0.76 0.90 0.166 0.049 0.357246 0.357214 0.86 0.94 0.164 0.047

Mean Increasing 20 7.535426 7.535431 2.03 2.58 0.309 0.031 7.530139 7.530140 2.12 2.56 0.305 0.031 7.516108 7.516101 2.23 2.58 0.297 0.030

(SD) Increasing - 0.241316 0.241321 0.51 0.68 0.107 0.029 0.241046 0.241038 0.56 0.62 0.109 0.029 0.238677 0.238676 0.61 0.62 0.109 0.029

Mean Increasing 50 7.523183 7.523183 2.08 2.46 0.296 0.027 7.521716 7.521718 2.16 2.42 0.294 0.027 7.522059 7.522063 2.29 2.45 0.290 0.027

(SD) Increasing - 0.154315 0.154313 0.32 0.39 0.067 0.017 0.156079 0.156081 0.34 0.35 0.069 0.018 0.150450 0.150449 0.42 0.38 0.069 0.018

Mean Increasing 100 7.522774 7.522777 2.06 2.33 0.294 0.026 7.528007 7.527998 2.21 2.36 0.293 0.026 7.520409 7.520407 2.30 2.35 0.287 0.026

(SD) Increasing - 0.108679 0.108683 0.22 0.27 0.046 0.012 0.109668 0.109674 0.26 0.26 0.049 0.013 0.106146 0.106143 0.28 0.26 0.048 0.012

Mean Increasing 500 7.518666 7.518667 2.08 2.15 0.290 0.026 7.519748 7.519749 2.20 2.16 0.287 0.026 7.520410 7.520395 2.30 2.15 0.285 0.026

(SD) Increasing - 0.050378 0.050366 0.10 0.11 0.021 0.006 0.046680 0.046682 0.12 0.11 0.020 0.005 0.048176 0.048174 0.13 0.11 0.022 0.006

Mean Decreasing 10 7.516377 7.516375 2.02 2.65 0.147 0.016 7.525596 7.525599 2.12 2.65 0.149 0.017 7.516641 7.516644 2.18 2.60 0.147 0.017

(SD) Decreasing - 0.282519 0.282512 0.56 0.76 0.061 0.017 0.283809 0.283811 0.69 0.79 0.063 0.018 0.284191 0.284189 0.73 0.76 0.064 0.018

Mean Decreasing 20 7.516985 7.516986 2.03 2.50 0.144 0.014 7.520245 7.520244 2.16 2.52 0.143 0.014 7.528175 7.528186 2.25 2.51 0.144 0.015

(SD) Decreasing - 0.193632 0.193640 0.40 0.51 0.040 0.010 0.196857 0.196853 0.46 0.50 0.042 0.011 0.201582 0.201580 0.53 0.50 0.045 0.012

Mean Decreasing 50 7.522167 7.522168 2.09 2.40 0.142 0.013 7.517061 7.517060 2.17 2.37 0.140 0.013 7.522478 7.522480 2.29 2.39 0.140 0.013

(SD) Decreasing - 0.128649 0.128649 0.25 0.31 0.026 0.007 0.121981 0.121978 0.30 0.30 0.025 0.007 0.128694 0.128683 0.34 0.31 0.028 0.007

Mean Decreasing 100 7.525352 7.525346 2.07 2.28 0.142 0.013 7.518204 7.518212 2.19 2.29 0.140 0.013 7.520611 7.520618 2.29 2.28 0.139 0.013

(SD) Decreasing - 0.089412 0.089409 0.18 0.22 0.018 0.005 0.089155 0.089151 0.22 0.22 0.019 0.005 0.089938 0.089940 0.23 0.21 0.019 0.005

Mean Decreasing 500 7.520271 7.520269 2.08 2.12 0.141 0.013 7.520390 7.520395 2.20 2.12 0.139 0.013 7.522594 7.522601 2.31 2.12 0.139 0.013

(SD) Decreasing - 0.039314 0.039318 0.08 0.09 0.008 0.002 0.039354 0.039361 0.09 0.09 0.008 0.002 0.040082 0.040093 0.11 0.09 0.009 0.002

Mean Polynomial 10 7.536923 7.536919 2.06 2.63 0.093 0.010 7.507964 7.507963 2.13 2.60 0.090 0.009 7.527502 7.527505 2.24 2.62 0.091 0.010

(SD) Polynomial - 0.255325 0.255315 0.54 0.72 0.035 0.009 0.264414 0.264411 0.59 0.66 0.036 0.009 0.254861 0.254865 0.66 0.67 0.037 0.010

Mean Polynomial 20 7.524714 7.524708 2.04 2.47 0.090 0.008 7.522947 7.522950 2.15 2.47 0.089 0.008 7.518435 7.518433 2.27 2.49 0.088 0.008

(SD) Polynomial - 0.180439 0.180429 0.37 0.47 0.024 0.006 0.176911 0.176913 0.42 0.44 0.024 0.006 0.178367 0.178376 0.46 0.44 0.025 0.006

Mean Polynomial 50 7.518350 7.518350 2.07 2.35 0.088 0.008 7.521516 7.521515 2.19 2.35 0.087 0.008 7.523152 7.523160 2.31 2.37 0.087 0.008

(SD) Polynomial - 0.111997 0.111995 0.24 0.29 0.015 0.004 0.108983 0.108979 0.26 0.26 0.015 0.004 0.111560 0.111570 0.30 0.27 0.016 0.004

Mean Polynomial 100 7.521479 7.521485 2.08 2.27 0.088 0.008 7.523630 7.523630 2.20 2.26 0.087 0.008 7.523848 7.523837 2.30 2.26 0.086 0.008

(SD) Polynomial - 0.079666 0.079666 0.17 0.20 0.010 0.003 0.078820 0.078826 0.18 0.18 0.011 0.003 0.080932 0.080931 0.20 0.18 0.011 0.003

Mean Polynomial 500 7.522251 7.522250 2.09 2.12 0.087 0.008 7.519763 7.519771 2.19 2.11 0.086 0.008 7.521230 7.521216 2.31 2.11 0.086 0.008

(SD) Polynomial - 0.035953 0.035954 0.07 0.08 0.005 0.001 0.035172 0.035171 0.08 0.07 0.005 0.001 0.036668 0.036681 0.10 0.08 0.005 0.001

Mean U-inverted 10 7.507583 7.507588 1.97 2.54 1.366 0.117 7.528817 7.528802 2.13 2.61 1.397 0.133 7.532644 7.532648 2.21 2.59 1.395 0.140

(SD) U-inverted - 0.258917 0.258910 0.54 0.71 0.536 0.123 0.271078 0.271068 0.60 0.68 0.589 0.141 0.266924 0.266927 0.69 0.70 0.612 0.150

Mean U-inverted 20 7.516705 7.516707 2.04 2.48 1.337 0.105 7.523812 7.523814 2.17 2.50 1.335 0.112 7.531701 7.531703 2.27 2.49 1.338 0.119

(SD) U-inverted - 0.178175 0.178180 0.40 0.50 0.360 0.081 0.184435 0.184432 0.44 0.46 0.392 0.090 0.187108 0.187096 0.48 0.45 0.423 0.099

Mean U-inverted 50 7.517843 7.517841 2.07 2.36 1.317 0.101 7.516782 7.516788 2.21 2.39 1.291 0.101 7.514866 7.514860 2.28 2.36 1.274 0.103

(SD) U-inverted - 0.115051 0.115047 0.24 0.29 0.227 0.050 0.114954 0.114966 0.28 0.28 0.242 0.055 0.114709 0.114704 0.30 0.28 0.250 0.057

Mean U-inverted 100 7.517600 7.517610 2.07 2.26 1.309 0.102 7.517269 7.517269 2.20 2.28 1.287 0.102 7.517938 7.517937 2.31 2.28 1.265 0.103

(SD) U-inverted - 0.082225 0.082220 0.17 0.20 0.165 0.038 0.082054 0.082052 0.20 0.20 0.171 0.039 0.077589 0.077602 0.22 0.19 0.170 0.039

Mean U-inverted 500 7.520172 7.520185 2.08 2.11 1.308 0.107 7.522110 7.522117 2.20 2.12 1.291 0.109 7.517782 7.517791 2.31 2.12 1.259 0.107

(SD) U-inverted - 0.036730 0.036722 0.08 0.08 0.073 0.017 0.036103 0.036098 0.08 0.08 0.076 0.018 0.035719 0.035707 0.10 0.08 0.078 0.018

Table 1: Monte Carlo Simulation of Serial Interval Study: The table reports the mean and the standard deviation
of the evaluation parameters µ̂ω, σ̂2

ω and MSER(t) for differing specifications of the pandemic and the serial interval
study. Namely the true underlying serial interval distribution, different assumptions on the shape of R(t) and
the sample size of the serial interval study. The table furthermore compares estimates obtained via the presented
parametric “Gamma” approach to a nonparametric (NP) approach.



3 Modeling an Outbreak

Having understood the properties of the estimator of the reproduction number, R̂(t), we can now

move on to the simulation of a whole outbreak, in order to assess the behavior of the estimator

at each point throughout the epidemic. In order to accurately simulate the progression of an

outbreak, we need to be able to account for the changing susceptibility of the population. The

TSI model described in Section 2 takes the assumption of an infinite population, which, as

noted in Fraser (2007), may be valid in the beginning of an outbreak. To account for the

changing susceptibility of the population in later stages of the pandemic, however, we can turn

to a different group of epidemiological models known as compartmental models, the most well

known of which is the SIR model.

3.1 Compartment Models: SIR

The basic discrete time SIR model is a compartmental model, categorizing the total population

into three subgroups: (1) S = Susceptible, (2) I = Infected, and (3) R = Recovered. In this

framework, Chudik, Pesaran, and Rebucci (2020) note that this is simply an accounting exercise,

and when we allow the proportion of the population in each subgroup to vary over time, we

get the identity N = St + It + Rt. Progressing further, these groups are related to each other

with medically informed parameters specific to each disease. In the basic framework, these two

parameters are β and γ, where β represents the rate of transmission, and γ the recovery time

(Chudik, Pesaran, and Rebucci, 2020). The SIR model with these parameters, is therefore a set

of discrete equations outlining the change in the number of people in each subgroup.

St+1 − St = −βSt
N
It (12)

It+1 − It = (β
St
N
− γ)It (13)

Rt+1 −Rt = γIt (14)

In this basic framework, it can be seen that given a set of initial conditions (N, β, γ) this SIR

model is deterministic. Further parameters can be added to account for certain mitigation efforts

(e.g., to model social distancing as in Chudik, Pesaran, and Rebucci (2020)). Additionally, the

β parameter could be allowed to vary over time or location to account for regional or time-
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varying differences in the rate of transmission. The basic SIR model can easily be extended

by partitioning the population into more narrow subgroups. Common examples of these extra

groups are E = Exposed, and D = Dead. New parameters would have to be added to account for

transitions to/from these groups into/out of the other subgroups in the compartmental model.

3.2 Time Since Infection vs. Compartment models

As noted before, the assumption of an infinite susceptible population is restrictive and cannot

be used to accurately simulate the progression of new infections. For this reason, to model the

outbreak, we alter the TSI equation to include an adjustment for the changing susceptibility

of the population as new individuals become infected. This adjustment implicitly morphs the

TSI into a quasi-compartmental model as we then track both the number of infected and the

number of susceptible over time, resulting in a kind of SI-TSI model.

In order to simulate an outbreak, we therefore assume infections to evolve with the dynamic

described by the TSI model that was presented in Section 2, where we additionally account for

compartments, giving rise to:

İSI(u) = R(t)∆

N∑
n=1

ω(n∆)I(t− n∆)× S(n∆)

N
(15)

ĨSI(t) =
24∑
i=1

İSI(t+ ∆− i∆) (16)

The state of the pandemic described by R(t) is estimated using the same estimator as in Equa-

tion 8. The compartmental TSI model described in Equation 16 is an SI model, and is used to

generate a simulated series of cases. We use this simulated set of cases to test our estimator

of R(t) given knowledge of the DGP. We take the constant R(t) and the multiple-waves R(t)

scenarios described earlier to understand the performance of our estimator on the data simulated

with this SI model.

Figure 5 shows the results of a simulated outbreak where the serial interval is described by a

Gamma distribution whose parameters are unknown to the econometrician and, like in the TSI

case, are retrieved via a serial interval study. We can see that the R(t) estimator performs

slightly better in the constant R(t) case in Figure 5c compared to the multiple-waves R(t) case

depicted in Figure 5d, albeit both estimators seems to perform rather well -these results are

in line with the ones displayed in Figure 4. In particular, the estimator performs the worst
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(a) Constant R(t): outbreak simulation
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(b) Multiple-waves R(t): outbreak simulation
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(c) Estimate of constant R(t)
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(d) Estimate of multiple-waves R(t)

Figure 5: Simulation of an SI model: the top panels display the evolution of an outbreak which
follows two different processes for the true reproduction number as well as a different size in
population (this is simply the case in order to obtain two waves and avoid infecting the whole
population at an earlier stage in panel (b)). Underneath, the resulting R̂(t) is displayed together
with its true value.

at the minimum and maximum of the R(t) function in Figure 5d. One explanation for this

comes from the stable conditions assumptions that the TSI model makes in order to be able to

separate the infectiousness β(t, τ). R(t) is a proxy for future rates of change in cases, so when

R(t) is increasing, the future rate of change in cases is increasing, which appears to result in the

overestimate of the instantaneous R(t) that we see in Figure 5d. We see the inverse scenario as

R(t) is decreasing, with an underestimate on the way down.

Finally, we go one step further and relax the assumption that we have knowledge of the un-

derlying serial interval distribution type. In Figure 6 we simulate an SI-TSI model where the

underlying distribution is a weibull. We then compare the R(t) estimates if we assume a gamma
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distribution where the parameters are estimated from the serial interval study, and a non-

parametric R(t) estimator. We can see that when we don’t know the shape of the underlying

distribution, the non-parametric estimator performs just as well as the parametric one, and may

therefore be preferred if there is no prior knowledge of the true, underlying process.
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(a) Parametric estimate
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(b) Nonparametric estimate

Figure 6: Estimated R(t) under different Serial Interval estimation techniques.

4 Understanding an Evolving Virus

Late December 2020, authorities started to inform about evolutions of the SARS-CoV-2 genome

sequences. A diversification of the virus due to evolution and adaptation processes has been

observed globally. The rapid implementation of open-source sharing of virale genome sequences

have eased real-time detection and tracking of variants. All viruses observe continuous muta-

tions, and most mutations in the viral genome that emerge then quickly recede as they share

the same characteristics of the main lineage. However, if a mutation provides selective advan-

tage to the variant, it is considered variants of concern (VOC). A variant of Concern is defined

by at least one of the following characteristics: a higher transmissibility, infection fatality or

reinfection rate than the original lineage, or if current drugs and vaccine are inefficient against

it.

In Europe, the British variant, known as variant B.1.1.7 rapidly expanded.7 The lineage was

detected in November 2020 in the South East region of England. The B.1.1.7 carries a mutation

7Other potentially dangerous variants are reported by the WHO, such as the Brazilian variant (named P.1), and
the South Africa variant (B.1.351) at the time of the writing.
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in the S protein, producing negative results for the S-gene target when sequencing PCR tests.

Hence, the absence of S gene detection, called S-gene target failure (SGTF) can serve as a

proxy for identifying B.1.1.7 cases8. The British variant was classified as variant of concern as

it displays higher transmissibility rate than the original lineage. Though the number of studies

are limited, studies found scientific evidence for an increase in Rt by a factor between 1.35 and

1.75 [(Volz et al., 2021), (Davies et al., 2021), (Sarah et al., 2020)].

Shinde, Bhorat, and Lalloo (2021) on the other hand provide evidence of immune escape for the

South-African variant: individuals previously infected with preexisting variants have a degree of

susceptibility to reinfection. The study shows that having antibodies from the original lineage

do not protect against infection by the B.1.351 variant, with a risk of reinfection of 5%.

Studying variants in modelling epidemiology is particularly relevant, as even with a number of

cases slowing down and an effective reproduction number less than 1, if the effective reproduction

number of the new variant is greater than 1, the number of infected will eventually increase

toward a new disease wave (Ramos et al., 2021). In other words, in contrast with common

thoughts, Rt < 1 is not enough for having the spread of the disease under control, if a more

contagious new variant is active. It is important to understand how mutations may affect the

spread of covid-19 to better formulate public health responses, and in particular whether variants

require changes in existing measures for disease monitoring and containment.

4.1 Modeling VOC: SII TSI Model

To explicitly model and visualize the spread of VOC within the greater pandemic, we extend

the TSI SI model specified in Section 3 to include two infection compartments. This yields a

Susceptible-Infected1-Infected2 (SII) compartmental model. Figure 7a displays total cases, daily

cases, and R(t) estimation for the SII simulated cases. The variant is set to start later in the

simulated outbreak, so that we see it quickly take over the original lineage after day 150. Of

particular interest is the right panel of Figure 7a, where we can see that failing to track the two

disease lineages separately (the black R(t) estimate line), would lead policy makers to poorly

forecast the future disease progression.

Figure 7b extends this to another scenario, which we call the ”panic” scenario9. The trajectory

8Other mutations can cause SGTF, but lineage B.1.1.7 has been found to represent more than 96% of cases with
SGTF

9The ”panic” scenario corresponds to the modelling of R(t) as a polynomial of degree 5 as presented in Subsec-
tion 2.2
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of R(t) for the original lineage is such that the outbreak is very severe at first, which leads to

caution from people in response, followed by a slight relaxing of that caution later on. The

variant is again modeled to have a constant R(t) implying again that the standard cautionary

measures people took which were effective against the original lineage did not impact the rate

of transmission of the VOC.

In Figure 7a and Figure 7b it is initially tempting to look at the upper left panel of both Figures,

and use the dotted Infections1 line as a counterfactual on the trajectory of the original lineage

if the VOC had never existed. However, since within this modelling framework the original

lineage and the VOC both eat into each others susceptible populations, the introduction of the

VOC actually caused the outbreak of the original lineage to die out faster than it otherwise

would have. Therefore, the counterfactual scenario without the VOC would be in between the

ending percentage of infections from the original lineage and the percentage of both lineages.

While not perfect, this does provide upper and lower bounds which is useful for a more detailed

counterfactual analysis.

5 Application to Covid-19 Case Data

Having set the theoretical framework, we now apply the outlined models and estimation tech-

niques to real-world French data. This empirical exercise uses two different datasets: the first

one contains total daily cases and daily new cases, and the second one daily new cases of each

variant. Both datasets are available on the website of Sante Publique France.10 France started

recording daily cases on February 2nd 2020. Data on virus variants, however, has only been

recorded since February 12th 2021. Recording variant cases is a challenging exercise. In fact

variants are detected only through genome sequencing. Fortunately, France provides the nec-

essary data to study variants as sequencing is applied to all positive PCR test. In France, the

British variant, known as variant B.1.1.7 is now the most frequent lineage. However, there are

two other variants of concern circulating: the Brazilian variant (P.1), and the South Africa vari-

ant (B.1.351). France reports the daily percentage of sequenced test that are British variants,

South African and Brazilian variant together, original lineage and all undetermined variants.

Using these two dataset, we estimate R(t) and forecast the future spread of the virus, first in a

context of single lineage, and then taking into account the British variant circulating.

10https://www.data.gouv.fr/en/organizations/sante-publique-france/
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Figure 7: Simulated outbreak in the presence of a variant: the two panels on the left of each
graph display the evolution of the epidemic under two different specifications of the R(t)’s of
each variant. The true shape of these reproduction numbers is depicted in golden and red in the
right panel, together with the estimated overall R(t) -solid red line, and the individual R(t)’s
-dashed black lines, which is only feasible if infections are reported separately for each variant.



5.1 From theory to empirics

In order to forecast future infections in the context of the compartmental TSI model we need a

forecast of R(t). The TSI model builds on the assumption of static conditions during the period

of concern (as discussed in detail in Subsection 2.1). This assumption permits the separation of

infectiousness into a function dependent on time since infection, and a function dependent on

calendar time. Moreover, this assumption has implications for the type of forecasting model we

use to forecast R(t) within each calendar time regime. That is, we cannot specify a model that

would allow for changes in R(t) that resulted from changing conditions. For this reason, within

each of our estimated date ranges, we assume that the behavior of R(t) follows a white noise

process around a mean value.

The presence of noise in the real world estimation of R(t) comes from a few sources we assume to

be independent of calendar time. These are (1) intra-weekly variation in the level of testing (the

weekend effect), (2) variation in the number of false positives, (3) variation in the overall level

of testing, and (4) variation in the proportion of asymptomatic cases. These errors will have a

direct and immediate effect on the observed daily cases, which will in turn introduce noise into

our estimation of R(t). So, for our forecasted cases in the short term horizon, we assume R(t)

in date regime T follows

RT (t) = µT + εT (t) where εT (t) ∼ N (0, σ2
T )

Following from this model, the predicted value for RT (t) within this calendar time regime is the

sample mean of the estimated R(t) values. To verify that this is a plausible model, we need

to understand the basic time series dynamics of the R(t) estimates, including the presence of

autocorrelation and whether the series is stationary.

Figure 8 shows the daily R(t) estimates in blue, as well as the 7-day rolling mean of R(t)

for the entire observed time period in red. While we cannot make the assumption of stable

conditions for the entire period, visualizing the whole series is a useful first step. The 7-day

rolling mean introduces extra persistence (by design) in the data, which complicates testing for

autocorrelation and stationarity. For this reason, while the 7-day rolling average makes sense to

use when forecasting in order to remove the weekend effect, we focus on the daily estimates to
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verify the validity of Subsection 5.1.

Figure 8: R(t) Estimate Full Time Period

In each case of both the autumn and winter, we find that the best ARIMA model for the daily

estimate time series includes only an intercept term, while the 7-day rolling mean series includes

a first difference, implying that the 7-day series’ both contain a unit root. We additionally

run KPSS tests on both the Autumn and Winter R(t) time series and fail to reject the null

hypothesis of stationarity. Figure 9a displays the ACF plot of the daily estimated R(t) series for

Autumn while Figure 9 represents the Winter period. Although the autumn time period shows

some autocorrelation, the best model is still only an intercept term in both cases.

5.2 Empirical setting

We identify periods in the data where no major policy changes took place, i.e. periods of

static conditions. We first estimate Rt on a low-circulating period, with few non-pharmaceutical

interventions: July 15th 2020 to October 1st 2020. During this period, the virus was considered
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Figure 9: ACF Graphs Daily Data

under control, and no lockdown or curfew were implemented. Second, we apply our estimator

to a period of a high level of social distancing: October 15th 2020 to January 1st 2021. On

October 14th, France first introduced a curfew in major urban areas, quickly follow by a general

curfew in 38 departments on October 22nd, and by a strict lockdown combined with a curfew on

October 30th. While the lockdown ended on December 15th, social distancing was maintained

with a 6pm curfew. These periods then constitute a model consistent environment to employ

the TSI based Rt estimator shown in Equation 7.

Generally, as described in Subsection 2.2, a crucial parameter when estimating Rt is the serial

interval, usually estimated using infected-infectee data. However, as the study data used to

investigate the serial interval is not publicly available, we take the distribution estimated by

Sante Publique France as given. At the beginning of the epidemic, countries had to obtain

information on the serial interval as quickly as possible in order to conduct analysis, and many

countries did not conduct their own studies. Due to this time constraint, France decided in March

2020 to rely on Nishiura, Linton, and Akhmetzhanov (2020) for the serial interval estimation.

While more timely studies of serial interval where conducted on french data, we will follow the

official estimation which still relies on the initial study and take ω̂(τ) to be a Gamma distribution

with mean 4.8 and standard deviation 2.8.
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5.3 Estimating R(t)

For the sake of conciseness R̂(t) over all periods of interest is shown in Figure 8. We observe

that over the summer period, R(t) progressively decreases but remains greater than 1. Some

irregularities occur around August 15th. Our estimator is very sensitive to the number of daily

cases, which corresponds to the number of people that tested positive on a given day. As August

15th is a public holiday, and also corresponds to one of the most common weeks for vacation,

people got tested less around that date, hence spuriously impacting the number of daily cases.

The second period of interest (November-December 2020) corresponds to a high social-distancing

period. As expected, this non-pharmaceutical intervention leads to a sharp decrease in R̂(t):

our estimates fall below 1. Notably the estimated values of R(t) match the official estimates

provided by Sante Publique France.11

5.4 Forecasting Results

Using the sample mean of the estimated values for R(t) in the respective periods of interest we

can forecast the spread of the virus by employing the simulation framework outlined in Section 3.

The forecasting period is 20 days following the last date for which R(t) has been estimated, i.e

the respective ending dates of periods we assume to have static conditions. The initial number

of cases is taken from the actual data. ω̂(τ) is again assumed to be a Gamma distribution with

mean 4.8 and standard deviation 2.8.

The results for the first forecasting period, i.e. the 20 days following October 1st 2020 are shown

in Figure 10. Despite smoothing the trend the forecasted number of cases generally matches

the observed cases. Linking this back to reality we can see that the Autumn period without

intervention indeed led to the now so-called second wave of Covid. In this context a standard

TSI model proved to be a sufficient tool to predict the future rise of case numbers. It hence

remains a puzzle why policy makers failed to react in a timely manner. However, answering this

question is outside of the scope of this project and likely the answer is not to be found in any

model framework where humans are assumed to behave rationally.

However, applying this forecasting framework to the second period of interest yields a much

different picture and direly highlights its limitations, as seen in Figure 11. As we estimate R(t)

to be < 1 during the chosen lockdown period our model predicts a falling number of cases for

11https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-chiffres-cles-et-evolution-de-la-covid-19-en-france-et-dans-le-monde#

block-266151
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Figure 10: 20 Day Forecast Autumn 2020

Figure 11: 20 Day Forecast Winter 2020

the subsequent 20 days. In reality, however, there were multiple factors at play that prevented

the pandemic from coming to a halt. First, we argue that after January 1st 2021 we observe

in the data the lax adherence to social distancing rules over the Christmas holidays. Second,

at this point in time the British virus variant was already circulating in France without being

accounted for in the R(t) estimation. We hence expect our values for R̂(t) to be downward

biased for this period.

To illustrate this point further we apply the same forecasting procedure on data from spring

2021. In spring 2021, the British variant was actively circulating in France, and it’s increased

infectivity made it the main lineage circulating, taking over the original lineage. We again

estimate R(t) and conduct the forecasting procedure on the total number of daily cases, without

distinguishing between variants. The resulting 20 days forecast is displayed in Figure 12. As
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Figure 12: 20 Day Forecast Spring 2020

Figure 13: 20 Day Forecast Variant

expected, R̂(t) is downwards biased and we in turn observe that the model predicts falling

number of cases.

Contrarily, if we make use of case data by variant to employ our forecast procedure we are

much more successful obtaining forecasts that are closer to observed cases. Indeed, as Figure 13

clearly shows, the model now manages to account for the fact that the number of original lineage

cases is declining while the dominant new variant is driving cases up. These forecasting results

highlight the importance of taking variants into account when estimating R̂(t). As the different

variants have different R(t)s, failing to take them into account in the model biases the results.
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6 Conclusion

This paper presented and discussed some of the underlying difficulties when modelling and esti-

mating the dynamics of a pandemic using a widespread TSI model. Departing from a detailed

theoretical presentation of the model and its adoption to data observed in the real world, poten-

tial sources of biases as well as the properties of a parametric and a nonparametric estimator of

the instantaneous reproduction number R(t) were discussed in different settings. It was shown

that an accurate specification of the serial interval estimate is crucial for obtaining a good esti-

mate of R(t). Furthermore, the case of simultaneous pandemics through variants was considered

and the consequence of not observing a variant with a higher infectivity in the estimation of

R(t) was stressed. Since a pandemic is constantly evolving, the need to adopting the estimation

techniques and updating the disease related parameters frequently is crucial for obtaining precise

information about the current state of a pandemic. Especially the profound and timely study

of the underlying serial intervals across different regions is crucial as well as the early detection

of variants.
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